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Abstract—This paper introduces a motion planning method 
for a rapid mobile manipulator using an inverted pendulum 
model. We design a linear quadratic optimal controller to 
stabilize ZMP. The two kinds of ZMP stabilization strategies 
(Fixed ZMP and Relaxed ZMP) are proposed. The highly 
geared manipulator is controlled by a Cartesian computed 
torque (CCT) control for compliant motion. A rapid mobile 
manipulator called KDMR-1 has been developed for its 
application. The high acceleration and speed performances of 
the proposed methods are shown by a rapid maneuvering 
experiment. 

I. INTRODUCTION 
OST mobile manipulators have quite a low level of 
acceleration performance in spite of the wheel driving 

system, because the mobile manipulator is basically 
unstable. 

Stabilization of mobile manipulator is a topic that has 
been widely studied. Dubowsky [1] and Fukuda [2] 
considered stabilization methods for a stationary vehicle 
using the conventional optimal time trajectory planning of a 
manipulator. Sugano [3] used the ZMP (Zero-Moment Point 
[4]) as a stability measurement for planning the trajectory of 
a redundant manipulator. Papadopoulos [5] used the 
force-angle (FA) stability measure, which gives a simple 
geometric interpretation that predicts whether a robot will tip 
over. Kim [6] proposed a real-time ZMP compensation 
method using null motion. Alipour [7] used the 
Moment-Height Stability (MHS) Measure to detect 
overturning and to maintain stability. Many studies 
investigated tip-over prevention methods during 
manipulation. However, there has been no specific research 
that focused on the high acceleration performance of a 
mobile manipulator. Furthermore, some of researches are 
limited to a simulation due to the complexity of its algorithm 
and the lack of computational power. 

The motion planning using an inverted pendulum model is 
simple but widely used method. Kajita [8] designed a 
walking pattern using the inverted pendulum model with 
preview controller to stabilize ZMP. His walking pattern 
algorithm is adapted to HRP-2. Sugihara [9] used the 
inverted pendulum model for a real-time walking pattern 
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generation. Also, Park [10] designed a real-time walking 
pattern using the ZMP equation of simple inverted pendulum 
model and this walking pattern was implemented on KHR-3 
(HUBO). The strength of the motion planning method using 
the inverted pendulum model is simple enough to apply the 
real-time system and also guarantees the ZMP stability. We 
apply the motion planning method using the inverted 
pendulum model to a rapid mobile manipulator. 

In our previous research [11], we proposed the ZMP 
stabilization method of a four-wheel mobile platform for 
high acceleration performance using an inverted pendulum 
model. We achieved the maximum acceleration 0.5 g and 
maximum velocity 20 km/hr in spite of the high CoM 
(center of mass). In this paper, we design controllers to 
stabilize the ZMP of the inverted pendulum models as two 
different strategies. One is a fixed ZMP strategy and the 
other is relaxed ZMP strategy. The motion trajectory for 
5-DOF (degree of freedom) manipulator is generated from 
these inverted pendulum models. We use a Cartesian 
computed torque (CCT) control for compliant control of this 
manipulator. We can control the 5-DOF manipulator to have 
difference compliances in Cartesian coordinates. 

For its application, we have developed the dynamic 
mobile manipulator named KDMR-1 (KAIST Dynamic 
Mobile Robot-1) shown in Fig. 1. An experiment is 
conducted to evaluate the proposed methods. 

 

 
Fig. 1. Dynamic Mobile Manipulator (KDMR-1) 
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II. MODELING 

A. 5-DOF Manipulator 
The manipulator of KDMR-1 has 5-DOF as shown in Fig. 

2. There are three pitch joints, 2 3 4,  ,  θ θ θ  and two roll joints, 

1 5,  θ θ . The main purpose of the manipulator is to control the 
ZMP of the entire system by moving the 6 kg mass on the 
end-effector. Only for the ZMP control, we just need 2-DOF 
in the simplest case. One is for the X-axis ZMP and the 
other is for the Y-axis ZMP. However, we also want to 
control the height along the Z-axis and the orientation of the 
end-effector. Therefore we need three more degree of 
freedoms. The two pitch joints, 2 3,  θ θ  and one roll joints, 

1θ  are controlled by CCT control [12, 13] and the 
orientation of the end-effector, 4 5,  θ θ  is controlled by 
PD-servo.  
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Fig. 2. 5-DOF Manipulator 

 
The reason that we use CCT control is for active 

suspension like motion. The purpose of a rapid mobile 
manipulator, KDMR-1 is basically to deliver a small object. 
We just put an object on the end-effector without any 
bonding. The rapid mobile manipulator is operated on the 
normally flat ground. The ground condition is not perfectly 
good for the rapid mobile manipulator. If we use high gain 
PD-servo to control the manipulator, some small irregularity 
on the ground is able to cause critical vibrations on the 
end-effector of the manipulator. In this case, the small object 
will be fall down on the ground. For preventing this kind of 
instability, we can imagine spring and damper elements to 
reduce vibrations. However, we just use CCT control to 
accomplish joints compliance without any passive elements. 
CCT control does not require contact force sensors and only 
needs electric motors and encoder signals. We can easily 
obtain different stiffness and damping characteristics on 
each Cartesian axis independently according to a gain 
setting.  

In the case of the orientation of the end-effector, we 
simply use PD-servo, because the orientation of the 
end-effector is not crucial for compliance. 

B. Inverted Pendulum Model 
The KDMR-1 has two active wheels and two caster 

wheels as shown in Fig. 1. The front wheels are caster 
wheels and the rear wheels are active wheels using a 
differential drive mechanism. The length between front 

wheels and rear wheels is 0.3 m. At the end-effector, we put 
the 6 kg mass to enhance the ZMP compensation effect 
using the manipulator. The basic posture of the manipulator 
has a bent shape, as shown in Fig. 1, for a suspension effect 
and to prevent a singularity. The initial height from base to 
end-effector is determined as 0.48 m.  

In this paper, we deal with the forward movement along 
the X-axis and the rotional movement on Z-axis of the rapid 
mobile manipulator. The linearized inverted pendulum 
model for pitch joints on XZ-plane and roll joints on the 
YZ-plane are depicted in Fig. 3. We will refer the linearized 
model for pitch joints as pitch model and the model for roll 
joints as roll model. By calculating the CoM of the 
bent-shape mobile manipulator, we simplify the manipulator 
as a single inverted pendulum, pm  with a length, l  and the 
mobile platform as a single lumped mass, cm  in Fig. 3. To 
use linearized models, we assume that the centrifugal 
acceleration due to the X-axis offset from the center of 
rotation of mobile platform to the origin of the 5-DOF 
manipulator is ignorable. 

The velocity of cart along X-axis is xv  and the inclined 
angle of the pitch model is yφ . The velocity of cart along 
Y-axis is yv  and the inclined angle of the roll model is xφ . 
The force and torque input for the pitch model is ,  x yf τ , 
respectively and the force and torque inputs for the roll 
model is ,  y xf τ , respectively. 
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Fig. 3. Inverted Pendulum Model of Pitch Joints and Roll Joints 

 
The linearized equation of motion of the pitch model is 

derived as follows 
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The state-space equation of the pitch model becomes as 
follows 

 

 

   

xx = Ax xx + Bxux

xx = [ vx φ y
φ y ]T ,  ux = fx τ y

⎡
⎣

⎤
⎦

T  (2) 

 
The linearized equation of motion of the roll model is 4 

derived as similar forms. The linearized ZMP of the pitch 
and roll model is as follows 
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The difference of the equation of motion between the 

pitch model and the roll model is due to the direction of 
rotation of the inverted pendulum. We can design basically 
same controllers about both models. Our inverted pendulum 
model is very similar to one of Kajita’s model [8]. The main 
difference between Kajita’s model and our model is the 
existence of the torque input on the inverted pendulum. On 
the Kajita’s model, there is no torque input for the inverted 
pendulum. They only used the jerk of CoM of the inverted 
pendulum as a control input. The inverted pendulum 
becomes a free rotating system. In this case, the 
zero-moment point becomes the center of rotation of the 
inverted pendulum and ,  x yp p  maintains always zero. 

In our research, however, the inverted pendulum model 
has two inputs. One is the force on the mobile platform and 
the other is the torque on the inverted pendulum. To stabilize 
an inverted pendulum model and the ZMP of the system, we 
use a state-feedback controller. The state-feedback gain can 
be found by a linear quadratic optimal control. By changing 
the weighting matrix, we can tune the non-minimum phase 
characteristic of the inverted pendulum model as two 
strategies, fixed and relaxed ZMP. In the next chapter, we 
present an optimal solution and the simulation results of 
those feedback controllers. 

III. CONTROL SYSTEM DESIGN 

A. Cartesian Computed Torque Control for Compliance 
The manipulator of KDMR-1 is actuated by electric 

motors with harmonic gear and pulleys. To control highly 
geared electric motors, we generally use the PD-servo [14]. 
In this case, we usually set the high position gain for good 
tracking performance. In our rapid mobile manipulator, 
however, we need joint compliance and also good position 
tracking. To accomplish these requirements, we use CCT 
control.  

The equation of motion of the manipulator is shown as the 
following equation. 

 
 

   τ = M θ( ) ⋅ θ +V θ , θ( ) + G θ( )  (4) 
 

where   θ ,  θ  and   θ ∈Rn  are joint angle configurations, 
nRτ ∈  is the joint torque vector, ( ) n nM Rθ ×∈  is an inertia 

matrix, and    V (θ , θ ) ∈Rn  is the Coriolis and centrifugal 
torque vector, and ( ) nG Rθ ∈  is the gravity torque vector.  

The kinematic relations between the joint space and 
Cartesian space are expressed as follows [15, 16] 

 
  X = f θ( )  (5) 

 

 
  
X = J θ( ) θ  (6) 

 
 

  
X = J θ( ) θ + J θ( ) θ  (7) 

 
where mX R∈ is the Cartesian vector representing 

position of the end-effector and m nJ R ×∈  is the Jacobian 
matrix. 

In our system, the Cartesian vector X  is the position 
coordinates of the end-effector as follows. 

 

 
T

p p pX x y z= ⎡ ⎤⎣ ⎦  (8) 

 
We control two pitch joints, 2 3,  θ θ  and one roll joints, 1θ  

using CCT control. The number of joints, n  is three and 
also the number of the Cartesian vector, m  is three. 
Therefore the Jacobian matrix is a square matrix. The joint 
space acceleration vector leads to 

 
 

   
θ = J −1 θ( ) X − J θ( ) θ{ }  (9) 

 
The computed Cartesian space acceleration vector is 

represented with a feedback control scheme as follows. 
 
 

  
Xcp = Xd + Kv

Xd − X( ) + K p Xd − X( )  (10) 

 
where    

Xd ,  Xd ,  Xd is the desired Cartesian space 
acceleration, velocity and position vector, respectively and 

  K p
,  K

v
 are the position and velocity gain of the CCT 

control, respectively. Using equation (9) and (10), the 
computed joint space acceleration vector becomes  

 
 

   
θcp = J −1 θ( ) Xcp − J θ( ) θ{ }  (11) 

 
Using equation (4) and (11), the computed joint space 

torque required to achieve the computed Cartesian space 
acceleration is represented as 

 
 

   
τ cp = M̂ θ( ) ⋅ θcp + V̂ θ , θ( ) + Ĝ θ( )  (12) 

 
where cpτ  is the computed joint space torque vector and 

   M̂ (θ ),  V̂ (θ , θ ),  Ĝ(θ )  are the inertia matrix of the model, 
the Coriolis and centrifugal torque vector of the model, the 
gravity torque vector of the model, respectively. 

The error dynamics is as follows  
 

 

   

0 = M̂ ⋅ J −1 Xcp − J θ + J θ( ){ }
           + M̂ − M( ) θ + V̂ −V( ) + Ĝ − G( )

 (13) 

 
Under the assumption that the model and actual system is 
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quite well matched, the error dynamics become simple as 
follows  [13] 

 
 ˆˆ ˆ0,  0,  0M M V V G G− − −; ; ;  (14) 
 
 

   
E + Kv

E + K p E = 0  (15) 
 

where 
dE X X= − . CCT control scheme is depicted in 

Fig. 4. 
 

 
Fig. 4. Cartesian Computed Torque (CCT) Control Scheme 

 
The pole of the error dynamics equation (15) is as follows 
 

 
2 4

2
v v pK K K

s
− ± −

=  (16) 

 
The relationship between the feedback gain ,  p vK K  and 

the motion characteristic of the manipulator is as follows 
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Even in a low position gain, CCT control provides quite 

good position control performance maintaining joint 
compliance rather than PD-servo, because the torque 
computed from CCT control compensates for the gravity and 
nonlinear torque terms. In the actual system, we choose  
under-damped feedback gains for suspension-like motion as 

30,  8p vK K= =  on the Y-axis and as 30,  7p vK K= =  on 
the Z-axis. By choosing a low position gain and 
corresponding velocity gain, we can achieve suitable 
compliance of the manipulator and small amount of position 
error compared to low gain PD-servo. On the X-axis, we set 
comparably high position feedback gain as 

200,  20p vK K= = for more accurate ZMP trajectory 
following.  

By using CCT control, we set the different feedback gain 
on each axis. We tune the high feedback gain on X-axis for 
good position tracking performance and the low feedback 
gain on the Y, Z-axis for suspension-like motion. This is the 
strength of CCT control compared to the joint space 
computed torque control and usual PD-servo controller.  

In the actual system, KDMR-1, the computed joint space 
torque is converted to the voltage of electric motor 
considering the motor dynamics equation as 

 

 
   
Vi =

Rmi

ni Ki
T
τ cp ,i + Jmi

θ i + Bmi
θ i( )  (17) 

 
where n

iV R∈ is the voltage of the i th joint, in  is total 
gear ratio of the i th joint, T

iK  is the torque constant of the 
i th motor, iRm  is the terminal resistance of the i th motor, 

,cp iτ  is the computed joint space torque of the i th joint, 

iJm is the output inertia of motor, harmonic gear and pulley 
assembly of the i th joint and 

iBm is the output viscous 
friction coefficient of the motor, harmonic gear and pulley 
assembly of the i th joint. We apply the voltage to each joint 
as a PWM (Pulse-width Modulation) signal. Table 1 shows 
the important values of the mechanical parameters of the 
KDMR-1.  

 
TABLE 1 

PARAMETERS OF 5-DOF MANIPULATOR 
 Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 
in  296.3 190 120 187.5 181.3 

2
(Nm s )iJm ⋅  2.91 1.26 0.71 0.83 0.79 

(Nm s)iBm ⋅  162.6 84.92 75.24 76.72 71.70 
2

(Nm s )iI ⋅  0.02 0.02 0.024 0.06 0.06 

(kg)im  8 8 4.8 8.5 8.5 
(m)il  0.3 0.3 0.3 0.15 0.15 

 
 where iI  is the link inertia of the i th joint, im  is the link 
mass of the i th joint, il  is the link length of the i th joint. 
Because of the high gear ratio, the output inertia of motor, 
harmonic gear and pulley assembly is much bigger than the 
link inertia and the output viscous friction is not ignorable.  

B. ZMP Stabilization Control Using State-feedback 
The target system researched in this paper has a 

four-wheel driving system. It has a support polygon on a 
two-dimensional space through connections of four points 
on the ground. If the ZMP is located inside the support 
polygon, the system is secure in terms of its stability [4, 6, 
17]. Otherwise, the system starts to roll over. 

We design the state-feedback controller gain, K  to 
minimize the quadratic cost function, J . 

 
 ( )du K x x= −  (18) 

 ( )
0

T TJ Qx u Ru dtx
∞

= +∫  (19) 

 
where 0 0

Tdes
d jvx ⎡ ⎤= ⎣ ⎦ , ,  j x y= . The Q  is the 

weighting matrix for the state and R  is the weighting matrix 
for control inputs. The associated Riccati equation is 
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 10 T TA S SA SB R B S Q−= + − ⋅ +⋅  (20) 

 
By using the solution of Riccati equation, S , we can get 

the optimal feedback gain, K  as 
 

 1 TK R B S−=  (21) 
 

We simulate the state-feedback controller in Fig. 5 by 
changing the weighting matrices. In the model 1, we set the 
weighting matrices as  

 

 5

2

1 0 0
3 10 0

0 0 0 ,  
0 10

0 0 0

Q R
−

=
×

=
⎡ ⎤

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

 (22) 

 

In the model 1,  we apply a desired velocity, des
xv  as 3.5 

m/sec (12.6 km/hr) at 1 sec. We can find an undershoot on 
the velocity graph. We will refer this undershoot as a reverse 
action. Basically this is a non-minimum phase characteristic 
of the inverted pendulum due to a right-half plane zero. 
Actually this kind of undershoot is undesirable in usual 
system because it makes a big tracking error in transient 
state. To overcome this problem, Kajita [8] used a preview 
control and Napoleon [18] used two masses inverted 
pendulum model. In our research, however, we accept this 
reverse action. Because, there is a positive effect to push 
forward the inverted pendulum more quickly by moving the 
mobile platform backward. The fixed ZMP strategy makes 
the system to accelerate more dynamically. We can observe 
the maximum acceleration is about 0.7 g and the maximum 
velocity is 3.5 m/sec (12.6 km/hr).  

The ZMP xp  is normalized from -1 to 1. Here, ‘0’ 
indicates that the ZMP is located at the center of the support 
polygon, and ‘1’ or ‘-1’ signifies that the ZMP is located on 
the edge of the support polygon. The weighting about force 
input is much smaller than one of the torque input. It means 
that the feedback gain minimizes much more on the torque 
input. Resultingly, the force input is dominant. The torque 
input is almost zero in the model 1. It means that the ZMP 
coincides with the center of rotation of the inverted 
pendulum. To maintain the ZMP on the center of rotation of 
the inverted pendulum, the reverse action is inevitable. 

In model 2, we set the weighting matrices as  
 

 5

5

1 0 0
10 0

0 0 0 ,  
0 10

0 0 0

Q R
−

−
= =
⎡ ⎤

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

 (23) 

 

We apply a desired velocity as 1 m/sec at 1sec. The ZMP 
yp  does not maintain zero and the inverted pendulum 

rotates opposite direction compared to the model 1. The 
weighting of the force input is same as the one of the torque 
input in the model 2. As a result, both the force input and the 
torque input are valid for controlling the inverted pendulum 
model. Due to the torque input, we can track the desired 

velocity without the reverse action. If the ZMP is located 
inside of the support polygon, the stability of the system is 
guaranteed. In this control strategy, we just allow the change 
of the ZMP inside the support polygon. We will refer this 
kind of ZMP stabilizing strategy as a relaxed ZMP strategy. 

The span from front wheels to rear wheels is 0.3m. The 
span from a left wheel to a right wheel is 0.5m. The model 1 
is suitable for the pitch model, because it has a short span 
and it is required a rapid and dynamic acceleration 
performance. The model 2 is suitable for the roll model, 
because the stable area of the ZMP is large enough to apply 
relaxed ZMP strategy and it provides a good controllability.   

Two pitch joints, 2 3,  θ θ  and one roll joints, 1θ  are 
controlled by CCT control to follow the motion generated 
model 1 and 2. In the next chapter, an experiment is 
conducted to evaluate control schemes. 
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Fig. 5. Simulation results depending on weighting matrices 

IV. EXPERIMENTS 

A. Rapid Maneuvering Experiment 
We carry out a rapid maneuvering experiment using 

KDMR-1. We present the forward movement on the left side 
and the rotational movement on the right side in Fig. 6. The 
dash line is a model value and the solid line is an actual 
value of the mobile platform.  

On the left side, the desired forward velocity is 3.6 m/s 
(13 km/hr). We can observe that the actual velocity is well 
controlled by the desired value with the reverse action. The 
position of the end-effector along X-axis tracks the desired 
value quite precisely due to the comparably high gain on 
CCT control. The vibration on deceleration period is due to 
slips between the ground and tire. The maximum forward 
acceleration ignoring the vibration is 0.77 g. 
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On the right side, the desired rotational velocity is 0.8 m/s. 
The actual rotational velocity tracks the desired value 
without reverse action. There are tracking errors on the 
end-effector along Y-axis because the gain of CCT 
controller on Y-axis is low. Nevertheless, the low gain is 
good for suspension like motion and makes the end-effector 
more flexible. 
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Fig. 6. Rapid Maneuvering Test to Forward Direction 

V. CONCLUSION 
In this research, we considered a rapid mobile 

manipulator that has high acceleration and speed mobility as 
maximum 13 km/hr and 0.77 g. The 5-DOF manipulator was 
controlled by Cartesian computed torque control to have 
difference compliances in Cartesian coordinates. The motion 
trajectories were generated by inverted pendulum models. 
The ZMP stabilization control was addressed as a linear 
quadratic optimal control problem. Two kind of ZMP 
stabilization strategies, fixed and relaxed ZMP were 
introduced. Experimental results showed the performance of 
overall control scheme. 
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