
A Fast & Efficient Mission Planner

for Multi-rotor Aerial Vehicles

in Large, High-resolution Maps

of Cluttered Environments

David Butterworth

CMU-RI-TR-17-07

May 2017

The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania

Thesis committee:
Sanjiv Singh (Advisor)

Stephen Nuske
Sanjiban Choudhury

Abstract

Autonomous multi-rotor aerial vehicles have many potential applications
in urban environments, such as inspecting infrastructure, creating 3D maps
from the air, or delivering packages. However this involves flying close to
obstacles like trees and buildings, or flying under overhanging structures like
bridges, powerlines and doorways. Flying safely in environments like this
will require perception and planning with respect to a full 3D world model.

Recent work has demonstrated that multi-rotor UAVs can robustly lo-
calize to static point cloud maps of urban environments using LiDAR- and
VO-based methods. However it is difficult to plan directly in large 3D maps
due to the memory requirements and size of the state space. We investigate
the problem of planning paths in large high-resolution point clouds, for mis-
sions that include flying around obstacles and under overhanging structures.

Our approach is to plan offline a complete global mission path in the static
map, that is collision-free and satisfies altitude constraints. We use a random-
sample based planning algorithm to find approximate shortest paths, with
rejection-sampling to satisfy constraints. We also introduce a novel approach
for avoiding obstacles that may appear on the mission path by pre-planning
a network of alternative paths.

We present results showing a comparison of various path planning al-
gorithms and choose BIT* because it finds the approximate shortest path
in the fastest time. For planning alternative paths, we use geometric path
primitives based on splines or revert to BIT*. We also compare various data
structures for storing the 3D world representation and use a sparse Octree
to store occupied voxels because it offers the best trade-off between storage
memory and collision-checking speed. We present qualitative results showing
the resulting mission paths for multiple environments, including an industrial
site and a tree-filled area.

I

Acknowledgements

This research was conducted as part of the “Safe 50” project, working with:
Sanjiv Singh - PI

Marcel Bergerman - PI

Ji Zhang - Team Lead

Rushat G. Chadha
Vivek Velivela
David Murphy
Dave Wright
Kimber Rugg

Thanks to the staff at Near Earth Autonomy and Kaarta for collecting the
point cloud data used to conduct the experiments in this report.

This work was partially funded by the NASA Small Business Innovation Re-
search Award for “Autonomous, Safe Take-Off and Landing Operations for
Unmanned Aerial Vehicles in the National Airspace”, contract No. NNX16CA03C.

II

http://www.nearearth.aero
http://www.kaarta.com
http://www.sbir.gov/sbirsearch/detail/1155635

Contents

1 Introduction 2

1.1 UAVs in Urban Environments 2

1.2 Problem Motivation . 5

1.3 Problem Statement . 8

2 Related Work 10

2.1 Motion Planning Algorithms 10

2.1.1 Graph-based Search . 10

2.1.2 Discrete, grid-based planning 11

2.1.3 Roadmap Methods . 12

2.1.4 Probabilistic Sampling-based Methods 15

2.2 Autonomous UAV Navigation 16

2.3 Terrain Classification . 18

3 Mapping 21

3.1 Creating a 3D map . 21

3.2 World Modeling . 22

3.3 Ground Classification . 28

3.4 Public Map Data . 31

3.4.1 LiDAR DEMs . 31

3.4.2 Aerial Imagery . 35

4 Path Planning 38

4.1 Path Planner . 38

4.2 Constraints . 43

III

4.3 Obstacle avoidance . 46

4.4 Preparing paths for the UAV 52

5 Experiments 54

5.1 Path Planning . 54

6 Conclusion 63

IV

Nomenclature

AABB Axis-Aligned Bounding Box

BVH Bounding Volume Hierarchy

DEM Digital Elevation Map

DSM Digital Surface Map (includes the ground, trees & buildings)

DTM Digital Terrain map (the bare earth surface)

FAA United States Federal Aviation Administration

FCL Flexible Collision Library

GIS Geographic Information System

GPS Global Positioning System

LiDAR Laser-based radar (distance measuring technique)

MAV Micro Aerial Vehicle

NASA National Aeronautics and Space Administration

Octree A data structure where one parent cell gets divided into 8 child cells

PCL PointCloud Library

SfM Structure from Motion (a technique to create 3D models from 2D photographs)

TIN Triangular Irregular Network

TPS Thin Plate Splines

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle or “drone”

UTM UAV Traffic Management

VO Visual Odometry

1

1 Introduction

1.1 UAVs in Urban Environments

Civilian UAVs have potential applications in search and rescue, monitoring

agricultural crops, and inspecting utility infrastructure such as railways and

powerlines. The potential benefits are greater if the UAV is semi- or fully-

autonomous, requiring only occasional human oversight or none at all. This

would allow the above use cases to be performed at lower cost, during any

time of day, or enable new possibilities such as autonomous package delivery.

However there is significant work required to improve the current tech-

nology: battery life, safety control systems, beyond line of sight control, and

the computation-to-weight ratio. At present, electrically powered multi-rotor

Figure 1: Potential applications for UAVs. Image adapted from [1].

2

Figure 2: The FAA categorizes UAVs based on their weight and if they can be
operated beyond visual range of a human operator. In this work we test our
planning and obstacle avoidance system with a small UAV, that was controlled
autonomously but within visual range of a safety operator. Image adapted from [1].

UAVs have a flight time of less than 30 minutes, which is not long enough

for most of the above applications. Flight safety control systems need to

be developed so the UAV won’t fall out of the sky if something unexpected

happens. Mission control systems must be developed so the ground station

can send occasional commands to the UAV and receive telemetry, beyond

line-of-sight or even in a different geographical location. And all of this au-

tonomy equipment, plus the mission payload, needs to be light enough to be

carried by the UAV.

The FAA is investigating the concept of a UTM system. If you want to

fly a regular helicopter or airplane, you can submit a request via the internet

and receive instant approval for a flight plan. There are laws about what

altitude the craft must fly and what to do if another craft is encountered.

3

Figure 3: The hazards that a small UAV must handle when operating in
cluttered urban environments. Image adapted from [2].

When the aircraft is nearing controlled airspace then it must communicate

with the local aircraft control tower. Before allowing UAVs to operate in

the national airspace, they will need to be capable of avoiding obstacles,

and safely operating in the event of loss of signal in the radio data link or

interference in GPS.

NASA is investigating the feasibility of UAVs operating in cluttered urban

environments. For small-sized UAVs they have identified that the 50 feet

near the earth’s surface is the most dangerous, due to dynamic obstacles,

uncertain wind currents in urban landscapes, and safety issues related to the

vehicle’s power limitations or a complete system failure. Therefore NASA is

leading a research program called SAFE50, to develop a Safe Autonomous

Flight Environment for the 55 lb class of UAVs operating in the lowest 50

4

feet of airspace [2].

In developing autonomous UAVs, some of the open research problems

are similar to those with ground-based robots, whereas other problems are

unique. For example, the general object recognition problem and current

approaches are similar for all types of robots, however the specific challenge

is developing perception algorithms that can be run on the sort of low-power,

small form-factor computer that will physically fit on a UAV. The robot lo-

calization problem is similar to that for self-driving cars, using LiDAR or

camera-based odometry techniques, however the sensors on a UAV must be

more powerful if the vehicle is operating high above the earth surface. Also

obstacle avoidance algorithms are similar to those used by high-speed self-

driving vehicles. One unique challenge is in developing control algorithms

for autonomous UAVs because these vehicles are inherently unstable. Whilst

a ground robot can safely come to a sudden stop, with the risk of hitting

another object, a UAV also risks falling out of the sky and becoming a pro-

jectile.

1.2 Problem Motivation

The typical approach for autonomous UAV navigation in outdoor environ-

ments is to use GPS localization and to plan paths comprising of sparsely-

located waypoints [3, 4]. The assumption is that the environment is mostly

free of obstacles, and obstacle-avoidance is achieved using a reactive algo-

rithm.

Recent work has shown that LiDAR- and VO-based methods can en-

able GPS-denied localization for multi-rotor MAVs [5] and larger UAVs [6].

5

Also Zhang et al. have combined a LiDAR-based odometry system with

waypoint-following to enable a light-weight industrial UAV to autonomously

fly between sparse waypoints, without using a GPS [7].

We extend the work of Zhang et al. [7] and develop a method to plan paths

with dense waypoints and continuously-varying curvature, to automatically

generate paths that enable the UAV to fly around obstacles and through

overhanging structures. The LiDAR odometry and mapping system creates

a static map of dense 3D points (a point cloud), for environments of more

than 500 m2. We propose to exploit the rich detail of the static map, and

to reduce online computation time, by pre-planning a global path directly in

the point cloud.

The problem of planning paths through large point clouds is interesting

because not many research groups have access to large 3D maps and so

there has been little work in this area. It is challenging because storing,

manipulating or visualizing large point clouds requires a large amount of

computer memory and specialized algorithms. And typical approaches to

Figure 4: Typical approaches to autonomous UAV navigation in outdoor
environments use paths planned through sparse waypoints.
(left) A path of [lat.,long.] waypoints in a 2D map, using GPS localization [4].
(right) A path of [x,y,z] waypoints in a 3D map, using LiDAR/VO localization [7].

6

robot motion planning don’t scale to large state spaces.

In this work we investigate various methods for storing dense 3D maps

and algorithms for path planning. We describe a hierarchical planning sys-

tem that generates smooth take-off and landing motions for the vehicle and

adheres to altitude constraints. Additional post-processing adds velocity in-

formation to the path, to create a trajectory. To achieve obstacle-avoidance,

the system pre-computes a road-map of alternative paths so that when the

UAV is flying it only has to check which paths are safe to travel.

Figure 5: Our mission planner produces paths with continuously-varying
curvature and densely-located waypoints. The red line shows an example of a
main path generated by our planner for a point-to-point mission flying at a fixed
altitude. Not shown are the alternative paths used for obstacle avoidance.
(left) The take-off phase consists of a short vertical segment and a smooth
transition into the mission phase.
(right) The path avoids obstacles, like the tree, and moves over the ground
terrain at a fixed altitude.

7

1.3 Problem Statement

The specific problem we are trying to solve is:

We have a multi-rotor UAV that we want to fly autonomously from a start

position to a goal position in a static map. It should follow a continuously-

varying curved path (a global path) consisting of densely-located waypoints

at 0.10m separation. We need to model the environment with sufficient detail

in 3-dimensions, to plan paths through overhanging structures like doors or

passageways. The path should be collision-free with respect to the static

map. The path should be as smooth as possible, without sharp changes in

curvature, so the UAV can fly at maximum forward speed.

For system modeling, we treat the low-level flight controller that is built-

in to our experimental UAV platform as a “black box”, so we don’t consider

rotor torque or thrusts. We model the UAV as a point mass with position

(x, y, z) and attitude (forward velocity, altitude, roll, yaw). However, for

planning, we decouple this model and plan in a hierarchical manner:

1. Plan a path in position space

2. Add velocity information to path

3. Follow the path using a trajectory-tracking controller

8

The discrete path planning problem (1) can be formally defined as follows:

We have a path p of waypoints,

where pi = (xi, yi, zi) for i = 0 to n, and ‖pi, pi+1‖ = 0.10m

A world model: obstacles w, elevation e

Find the shortest path:

min
∑n

i=0

‖pi, pi+1‖

s.t.

p0 = start position

pn = goal position

curvature(pi−m, pi+m) < c

altitudemin < getAltitude(pi, e) < altitudemax

inCollision(pi, w) = false

9

2 Related Work

There is a large body of work related to motion planning for various types of

robots, as well as algorithms specifially for planning and obstacle avoidance

for UAVs.

2.1 Motion Planning Algorithms

The general motion planning problem is to make the vehicle smoothly fly

between two poses, without hitting any obstacles. Ideally the robot is rep-

resented by a 3D model, the world and obstacles are all 3D surfaces, and we

want to find the shortest path to the goal whilst adhering to constraints such

as smooth acceleration. However it is widely known that continuous motion

planning problems like this are computationally intractable [8]. Therefore,

two practical approaches are to discretize the problem and solve it within that

discrete resolution, or to decompose the problem into sub-problems that can

be solved in a hierarchical fashion.

2.1.1 Graph-based Search

When a planning sub-problem can be represented by a graph then we can

use graph search to find an optimal solution. Examples include topological

maps or roadmaps (discussed below). Algorithms include Dijkstra [9] which

is a type of brute-force search, and A* [10] that uses a heuristic to avoid

searching the entire space.

Some key benefits of this type of planner are that they are “complete” and

will return an exact solution. They will also report if there is no solution.

10

For example, A* can be used to find the shortest path for a UAV from a

set of waypoints. Note that there are many variants of A* that have other

properties. For example, Anytime Repairing A* [11] trades-off planning time

for optimality, by iteratively planning a sub-optimal solution that gets better

over time.

One drawback is that a lot of memory is required to store the vertices and

edges. It is possible to use dynamic memory allocation or store the graph

out-of-core, however this greatly increases the time to search the graph.

An example of such a problem is finding the shortest path between two

geographical locations on a graph of the US road network, which contains

approximately 24 million vertices and 58 million edges. Bast et al. developed

an algorithm called TRANSIT [12] to pre-process this graph into a hierarchi-

cal structure in order to increase lookup times. They demonstrated shortest

path queries in 10 microseconds, after taking 20 hours to pre-process the

graph.

2.1.2 Discrete, grid-based planning

A typical path planning problem for a robot can be solved by discretizing the

world model into a 2D grid of cells or a 3D grid of voxels. Grid-based meth-

ods are related to graph-based methods in that a graph can be constructed

from the grid. We call this an explicit graph, which can be searched using

various searched-based planning algorithms. In contrast, grid-base planning

algorithms typically use an implicit graph structure where the planner oper-

ates directly on the grid, without using the time or memory required to build

an actual graph.

11

The grid must have an associated connectivity that defines how the robot

is allowed to move from one cell to the next. A 2D grid of square cells can be

4-connected or 8-connected between adjacent cells. A 3D grid of cubes can

be 6-connected or 26-connected, if motion is allowed between all cells that

have a neighbouring face, edge or corner. The time to plan through these

grid words increases with the connectivity and number of grid cells.

Most approaches for grid-based planning are improvements based on the

original A* algorithm. For example, Field D* [13] creates smoother paths by

moving the vertices from the center of grid cells to the corners and perform-

ing an interpolation step after edge expansion to short-cut linear segments

between the vertices. There is also a variant for 3D voxel grids called 3D

Field D* [14].

Removing this restriction on strictly planning 90◦and 45◦movements has

created a sub-class of methods called any-angle path planning. For example,

Theta* [15] produces shorter paths than Field D* or A*-with-smoothing, in

faster time and with less vertex expansions.

However, it is important to note that any path made on a grid-based

lattice will be sub-optimal. Any-angle path planning algorithms are trad-

ing off between planning time versus optimality when compared to A* with

smoothing.

2.1.3 Roadmap Methods

Roadmap-based planning methods are used to generate a graph that rep-

resents the robot’s environment or state-space that can be searched using

algorithms like A*. Roadmap methods are most useful for multi-query plan-

12

Figure 6: A path produced by SPARTAN [16], which is a type of discretized
Visibility Graph. The voxel grid map is shown colored by height. The black dots
are the graph vertices which are at a fixed distance tangent to the surface of
obstacles. Image by the author.

ning, where a single roadmap is generated in advance and later queried using

varying start and goal configurations. For example, in games programming,

a roadmap called a Navigation Mesh or Graph is pre-computed and used to

generate paths for characters directly on the 3D mesh that represents that

game world [17].

A visibility graph is a method that can be used to find the shortest

path between obstacles represented by polygon shapes [18]. The graph is

created by treating the obstacle vertices as the nodes in the graph, and

connecting edges between any pair of vertices that are visible to each other.

The shortest path can be imagined like pulling a string tight between the

polygonal obstacles. For example, Schøler used a 3D visibility graph to plan

shortest paths around polygonal obstacles for an autonomous helicopter [19].

One problem with the original visibility graph method is that it quickly

uses a lot of memory. Instead of expanding all edges to create a complete

visibility graph, Kneidl et al. use a cone heuristic to create a reduced visibility

13

graph and search only nearby vertices [20].

In modern robotics, the world is modelled using point clouds, and obsta-

cles can not easily be represented as polygons. Cover et al. created a type

of discretized visibility graph called SPARTAN (Sparse Tangental Network)

[16] where the vertices are evenly distributed by performing a distance trans-

form on the point cloud. Planning time is improved by using an angle-based

heuristic that determines which edges are expanded. However, when the dis-

tance to the next set of vertices is large, a small search-angle heuristic still

results in too many edge expansions. Also, the map data structure is a 3D

voxel grid, which like many methods limits the size of the map.

A topological roadmap is a sparse representation of the world using a

graph of distinct places. Each vertex is located in the free space between ob-

stacles and if multiple neighbouring vertices are visible, edges are only added

that give the best representation of the map’s topology. Beeson et al. devel-

oped an approach for identifying unique places on a map, like intersections,

corners or dead-ends in corridors [21].

A voronoi diagram is a raster image of points that are located in the

middle of the free-space between obstacles. One benefit of using a voronoi-

based roadmap is that it represents all of the toplogically-distinct paths,

or alternate routes, between obstacles. It is also called the medial axis or

skeleton of the free space of a map. Lau et al. developed a voronoi based

map system that can be updated in real-time [22].

14

2.1.4 Probabilistic Sampling-based Methods

Instead of trying to explicitly model a robot’s configuration space and the free

space in the environment, probabilistic planning methods find a solution by

sampling from the state-space to build a graph of valid states. These meth-

ods are probabilistically complete, which means that as the planning time

increases, it is more likely to find a solution. However there is no guarantee

that the plan will be optimal and the planner can’t tell you if there’s no so-

lution. For example, the PRM (Probabilistic RoadMap) [23] samples states

first and then connects them to create a roadmap. In contrast, the RRT

(Rapidly-exploring Random Tree) [24] builds a graph as it goes by interleav-

ing state sampling and edge expansion. In practice these methods produce

a solution very quickly, but the solution has sporadic random motions and

requires post-processing to smooth the robot’s behavior.

A further improvement is asymptotically optimal planners, which will also

converge towards the optimal solution as planning time increases. For exam-

ple, RRT* [25] adds an optimization step that tries to prune any non-optimal

sub-trees in the vicinity of new vertices. In practice, RRT* is slower than us-

ing RRT with post-processing, when applied to problems like path planning

or manipulator motion planning. Gammell et al. developed Informed RRT*

[26] which reduces the planning time required to find an optimal solution by

only optimizing within an ellipsoidal space between the start and goal.

Currently the state-of-the-art combines probabilistic methods in a hier-

achical approach. For example, BIT* [27] combines Informed RRT* and

dynamic programming, resulting in an algorithm that can produce optimal

solutions 3x faster. BIT* is also an “anytime” algorithm, which means that it

15

can produce a sub-optimal solution quickly and that solution gets better by

letting the planner run for more time. Choudhury et al. developed RABIT*

[28] with combines BIT* with a local optimizer, and can more quickly find

paths through thin passages of free space.

2.2 Autonomous UAV Navigation

A typical approach to achieving autonomous navigation of a UAV is to use

a hierarchical planning scheme. First, a global planner is used to find a path

to the goal position in a large low-resolution map of the environment. The

assumption is that the world is static and the global planner prevents the

UAV getting stuck in dead-ends. Then a local planner is used with a small

high-resolution map to plan short maneuvers or avoid obstacles.

Scherer et al. [29] use a hierarchical planning scheme for a small un-

manned helicopter. A probabilistic occupancy map is maintained in real-time

during flight and a potential fields method is used for planning. A global

planner finds a feasible path to pass through a set of sparse GPS waypoints

that are located hundreds of meters apart. Then a local, reactive planner is

used to avoid obstacles that appear on the current heading direction.

Dryanovski et al. [30] developed a navigation system for a micro-sized

quad-rotor aerial vehicle. A 3D model of the world is built as the UAV

flies around and this is projected down onto a 2D costmap which is used for

planning. The costmap obstacles are inflated by the robot’s radius so that

planning can be done by assuming the robot is a point mass. A global path is

planned on the grid using Dijkstra and an algorithm converts this grid-based

path into a set of sparse waypoints. If an obstacle appears then the planner

16

must re-plan the path. A position-based controller is used to reach the next

waypoint.

Various work has used motion primitives as part of the planning system.

MacAllister et al. [31] implemented path planning for a non-circular quad-

copter by using motion primitives with AD* to find the optimal path on a

state lattice. Fang et al. [32] demonstrated autonomous navigation on a

micro aerial vehicle, using a 2D costmap similar to Dryanovski. A global

path is found by running A* on a voronoi diagram, which is then sampled

at 5m intervals to product a set of sparse waypoints. The local planner is a

receding-horizon method that both keeps the robot headed on the nominal

path and also avoids obstacles. At each time step, a path is chosen from

a path library, which is a set of pre-generated motion primitives of varying

curvature and direction. The chosen path primitive is the one which mini-

mizes the distance to the next waypoint in the global path. Lastly the path

is optimized to minimize smoothness and maximize distance from obstacles.

Droeschel et al. [33] utilize a multi-layer planning system for a micro aerial

vehicle used for mapping buildings. A global planner is used to determine

optimal viewpoints of a target building and to plan the shortest path that

loops around the waypoints. In the next layer, a local planner is used to find

the shortest path using a multi-resolution voxel grid, to speed-up planning

time. At the low level, another local planner is used to avoid obstacles, based

on the potential field method.

In summary, the general approach to navigation over long distances is

to plan a path between sparse GPS waypoints on a 2D map. For planning

through cluttered scenes, a dense 3D occupancy map is typically used. How-

17

ever, due to the large amount of memory required to store occupancy grids,

this method does not scale-up to large environments. In contrast to this, our

work both demonstrates planning over long distances and through cluttered

environments, using a path with waypoints at 0.10m separation.

2.3 Terrain Classification

For mission planning it is useful to have a world model labelled with semantic

information. Having knowledge of the ground terrain, roads, overhead power

lines and buildings means that we can plan safer paths. In this work we

classify the ground terrain so we can determine the relative altitude of the

UAV’s position. We also experiment with using road data overlays obtained

from a GIS database.

In the GIS field, a ground terrain map is called a DEM or DTM, and

there is a large body of work related to generating ground terrain models.

For example, Hu et al. demonstrated an online system that can analyse and

classify streaming data from LiDAR sensors [34]. However, because we are

doing mission planning offline, we use a simpler offline method for classifying

the ground surface in a point cloud.

Axelsson [36] developed an algorithm for detecting the true earth surface

from airborne or terrestrial LiDAR. The mesh surface is represented by a

TIN (Triangular Irregular Network), and is fitted to the point cloud from

below. Initially a coarse set of seed points is chosen to define the TIN, which

is then iteratively refined such that some parameters are within tolerance.

The tunable parameters are the distances to the facet planes and angles to

the nodes.

18

MCC (Multi-scale Curvature Classification) by Evans and Hudak [37] is

an iterative algorithm that classifies points as ground or non-ground, based

on the curvature of that region. A coarse raster surface is interpolated using

thin-plate splines and the 12 neighbours for a specific point. If the curvature

exceeds a tolerance then the point is classified as non ground. The algorithm

interpolates a surface at multiple scales and is run until convergence in each

scale domain.

Brodu and Lague [38] created an algorithm for classifying complex scenes

using terrestrial LiDAR. They use a multi-scale feature that measures the

dimensionality of the point cloud data relative to a specific point, combined

with supervised machine learning. Each feature is a sphere located at one

point, with the radius being the scale. The feature characterizes if the neigh-

boring points contained within the sphere are predominantly on a 1D surface

(a line), a 2D surface (a plane), or are 3D. In the training phase, the user

Figure 7: One method of ground point classification from LiDAR data is to fit a
model of a cloth surface to the point cloud from underneath [35]. The accuracy of
the detected ground surface is dependent on how closely the model touches the
points or sags in-between them.

19

manually segments the training data and the learning system automatically

calculates the set of scaled features which will best classify the data.

Zhang et al. [35] developed a method for segmenting the ground terrain

from airborne LiDAR data by using a cloth simulation. The point cloud

is turned upside down and a virtual model of a cloth is draped over the

points., which becomes the detected terrain surface. The amount that the

cloth deforms to fit the points is dependent on parameters which define the

virtual forces between the nodes of the simulated cloth. A post-processing

step makes the cloth fit closer to points that define any steep gradients.

20

3 Mapping

3.1 Creating a 3D map

First we create a large and detailed, static 3D map of the world which is used

for planning a path for the UAV. To create this point cloud map we use the

“Stencil” LiDAR- and VO-based mapping device [39], which is manufactured

by Kaarta and based on Zhang and Singh’s work called LOAM [40] and

VLOAM [41].

The Stencil mapping device produces dense 3D point clouds and is quite

accurate as an odometry system for relative motion in outdoor environments.

Using a global map, it can localize to within 0.16m [42]. Fig. 8 shows the

Stencil in hand-held configuration, for 3D mapping, and also mounted to our

experimental UAV platform, for localization.

The static map is created by walking the Stencil through the entire en-

Figure 8: (left) The Stencil mapping device in hand-held configuration, which
we use to map an environment.
(center) The Stencil is mounted to our UAV platform, a DJI Matrice 600.
(right) The resulting point cloud. Note the points are dense where the mapping
operator used the hand-held device, and less dense in the middle of the scene.
The LiDAR detects powerlines (image top-right) but fails to detect the body of
water (image bottom-right).

21

vironment in which the UAV will eventually be flown. It is not possible to

create an airborne map, or for the UAV to localize, without creating at least

a small ground-based map first. This is because when the UAV is in the

air, the fast motion and lack of 3D structure cause problems for the LiDAR

scan matching. So the ground-based static map acts as an “anchor” for the

LiDAR scan-matching and additional motion estimation is provided by VO

with a camera pointed down at the ground.

The resulting point cloud is a list of 3D points with the z-axis is pointing

“upwards”, as defined to be opposite to the gravity vector from the Stencil’s

IMU sensor. The origin of the point cloud where x = y = z = 0 is the initial

position where the Stencil was initialized.

3.2 World Modeling

After creating a map of the world, the resulting 3D point cloud is converted

into a representation that can be used by the path planner. This world

model consists of two data structures: an Octree containing the 3D points of

obstacles, and a 2D grid representing the height of the ground. This section

describes these in more detail.

In robot mapping and planning, it is typical to create an explicit represen-

tation of the occupied space (the obstacles), the free space and the unknown

space. For example, one approach is to discretize the space into a grid at

some resolution and store information about the status of each block of space

in one of the following data structures:

• Elevation/height map

• Multi-level surface map

22

• Voxel grid

• Multi-resolution voxel grid (octree)

These approaches are commonly used with discrete, grid-based planning

methods, but can also be queried by probabilistic planning algorithms. The

benefits of a grid-based map are that it can:

• Store data for each cell, like “cost to go” or “visibility to object”

• Use shortest path algorithms

• Compute distance transforms, used for distance-to-obstacle queries

• Compute a voronoi graph, for knowledge of maximum distance to ob-

stacles

However, storing a complete representation of the world uses a lot of memory.

An alternative approach is to only store information about the occupied

space or obstacles. The assumption is that all the other unknown space is

free-space. Such data structures include:

• A surface mesh

• List of points (a “point cloud”)

• List of solid voxels

• Tree of points (octree, kd-tree , binary space partition)

We are concerned with planning paths for UAVs through cluttered envi-

ronments, including through doorways or overhanging structures, therefore

we need a high resolution map that can sufficiently represent the scene with

sufficient detail. Fig. 9 shows the result of using various voxel sizes to repre-

sent an environment, so we use a resolution of 0.10m which allows the planner

to find a path through tight spaces.

We are also concerned about planning through point clouds of more than

23

1 km2, therefore we need to choose a data structure that has low memory

usage. Fig. 10 compares the memory requirements of various data structures

for 3 point clouds of varying size. We define a “small” point cloud as one that

can be stored in a dense map representation, such as a 3D cost map or voxel

grid; a “large” sized point cloud to be one that is large enough that it must

be stored in a sparse map representation, such as a point cloud or octree;

a “massive” point cloud is one that is so large it must be stored out-of-core

(not covered in this work).

The planner also needs to query the world model for collision-checking.

Fig. 11 compares the collision-checking speed for various data structures for

a sphere shaped robot. It can be seen that the most memory efficient way of

storing point data is also the slowest structure to use for collision checking.

Therefore we model the world using an efficient Octree representation that

allows both fast collision checking and acceptable memory usage.

24

Figure 9: A comparison of the world model resulting from various voxel sizes.
We take the input point cloud and store it in an Octree with 0.10m resolution,
which allows the planner to find safe paths through cluttered environments. The
bottom-right image shows a real path generated by our planner, that allows a
MAV to explore inside a derelict house. A diameter of 0.60m was used for
collision-checking and one intermediate waypoint is located inside the building at
the top of the staircase to force the planner to find a through-path.

25

Figure 10: A comparison of the memory requirements for various data
structures used to store a 3D world model.
Note 1: The Octree structure in PCL is a pointer to the data contained in a point cloud, so the memory
usage includes the original point cloud.
Note 2: k = 3 dimensions. The k-d tree structure in PCL is a pointer to the data contained in a point
cloud, so the memory usage includes the original point cloud.
Note 3: Estimated size is 30 GB, based on 4 bytes per voxel + 10% overhead = 6,775,505,184 x 4 x 1.1
Note 4: Voxel Occupancy Grid used by SPARTAN uses a memory efficient char* structure, and supports
scrolling and indexed incremental distance transform (iidt).
Note 5: Estimated size is 60 GB, based on 8 bytes per voxel + 10% overhead = 6,775,505,184 x 8 x 1.1
Note 6: Voxel Occupancy Grid is a multi-dimensional std::vector of Int, which is not the most memory
efficient implementation.
Note 7: Estimated size is 380 GB, based on 56 bytes per voxel = 6,775,505,184 x 56

26

Figure 11: A comparison of average time taken (in milliseconds) to
collision-check the UAV in one position, for 3D maps stored various types of data
structures. This shows that an Octree structure is the fastest for
collision-checking.
The robot’s geometry is approximated with a sphere of radius 0.75m, which is a good
approximation for a multi-rotor UAV, and is the geometric shape which is fastest to
collision-check.
This test was conducted by drawing 10,000 random (x,y,z) positions for the robot, then
testing each data structure using the same set of positions.
For each type of map there are 3 numbers shown above: the first is the average time for
a collision-check, then the average time when the result is “in collision”, and the average
time when the result is “collision free”. Some data structures are much faster when the
result is “collision free”, such as Octree, whereas others like Point Cloud are much slower.

27

3.3 Ground Classification

The height of the ground terrain surface is required in order to plan paths

that are constrained to a specific altitude. This is important because the

ground is typically the most important obstacle that aerial vehicles must

avoid. We could treat the ground the same as any obstacle, which would

result in the UAV flying high over valleys and within the minimum distance

over hill tops. However it is safer, and generally required by law, that a UAV

be operated at a specific altitude during the mission phase.

In our raw input point cloud data, the z-axis is pointing opposite to the

direction of the gravity, and z = 0 at the position where the mapping device

was initialized. The ground height is the z value of a point representing the

ground surface in the point cloud. However we have no prior knowledge of

which points represent the ground surface.

The difficulty of segmenting the ground surface depends on how the Li-

DAR data was collected. A point cloud created using SfM will have almost

no points underneath trees of bushes, depending on how many aerial images

were used. An aerial LiDAR scan will usually result in some points pene-

trating through trees and hitting the ground. We use a terrestrial LiDAR

scanner, which has a high density of ground returns (points representing the

ground surface) which is the easiest type of data for ground segmentation.

We use the following process to create a ground elevation map:

1. Classify the LiDAR points as ground or non-ground using a method

based on Axelsson’s adaptive TIN algorithm [36].

2. For the ground points, fit a mesh surface using Delaunay Triangulation

method with a 2.5D assumption.

28

3. Sample the mesh surface on an x,y grid with a resolution of 100 points

per square meter, which matches the 0.1m resolution of our Octree

map.

4. Store the resulting x,y coordinates and elevation in a 2D grid data

structure for use by the planner.

29

Figure 12:

The process of classifying a point cloud to create a ground terrain map.
1: The input point cloud.
2: The points classified as ground and non-ground.
3: The ground points are triangulated into a mesh.
4: The final world model consists of 3D Voxels stored in an Octree (top) and
height information stored in a 2D grid.

30

3.4 Public Map Data

Instead of having to manually create a point cloud map of an environment be-

fore we fly the drone, it would be convenient to use publicly available maps for

localization and planning. For example, various Government agencies occa-

sionally gather aerial LiDAR data, oblique aerial imagery and ortho-photos.

Hemann et al. [43] demonstrated improved localization for an autonomous

helicopter by matching data from the on-board LiDAR sensor with a publicly

available DEM.

In this section we compare the quality of this publicly available map

data to that which we collected. Unfortunately we can’t use this data for

localization because our system requires a much higher density of points,

which is only found by terrestrial or very low altitude LiDAR scans. Also,

public data is at least 1 year out of date which reduces its usefulness for

navigating in urban environments that are constantly changing. However,

there are efforts being made to create high quality publicly accessible terrain

data using crowd-sourcing [44]. In the future it is likely that citizens and

machines will share 3D mapping data of their local city via “The Cloud”,

to enable autonomous robots to safely operate in constantly changing urban

environments.

3.4.1 LiDAR DEMs

We examined elevation data of the Pittsburgh area created from a LiDAR

survey conducted in 2007 [45]. This data is accessible via an online interactive

tool called EarthExplorer [46]. We converted the LAS points data to raster

image tiles using LAS Tools. Fig. 13 (top-right) shows 4 DEM tiles overlaid

31

on a map of Pittsburgh, with each tile being approximately 3,000 km2 (10,000

feet2).

The LiDAR data is listed as having a ground resolution of 3.2 feet (1 me-

ter), however by measuring the average density of the points we determined

the resolution to be 1.5 meters. Fig. 13 shows a close-up view of the DEM in

the area of the Carnegie Mellon Campus, where Hamerschlag Hall is visible

as a small red-colored blob.

The ground-return points have already been classified so we can create

separate DSM and DTM maps. For each set of points a mesh is created

using the Delaunay Triangulation method with the assumption that the data

is 2.5D with a vertical z-axis. Fig. 14 (top) shows a surface model, including

the buildings and trees, and (bottom) shows a mesh of the bare earth. One

problem with public aerial data is that it can be out-of-date. For example,

in Fig. 14 (bottom) there is a large depression in the bare earth mesh where

the Gates-Hillman building now stands.

32

Figure 13: The bottom image shows a DEM of the area around the Carnegie Mellon
campus, captured using an airborne LiDAR with 1.5m resolution.
The map is colored by height, where dark blue is the lowest altitude of the river bed and
red is the highest altitude. This publicly-available data is not useful for air vehicles
operating near the ground terrain because it is out-of-date. The Gates-Hillman computer
science building is shown in the upper 3D photograph which was captured in 2016, but is
missing from the DEM which was captured in 2007.

33

Figure 14: This shows the result of converting the 2.5D DEM raster image into
a 3D surface. Top image: The DSM includes all objects, such as buildings and
trees. However, missing is the Gates-Hillman computer science building and the
Tepper Quad business building. Bottom image: The DTM is the bare earth
terrain.

34

3.4.2 Aerial Imagery

An alternative method to create a point cloud map is using aerial images and

the photogrammetry technique called Structure from Motion (SfM). Modern

aerial imagery is captured from a plane using an array of full-frame cameras

that take photographs at 5 angles: nadir (looking down), and 45◦oblique

angles of north/south/east/west. An example of what this looks like can be

seen on Bing Maps “Birdseye View” [47]. Also Sanborn provides a non-free

tool for viewing oblique imagery [48].

Using the original, full-frame images it is possible to reconstruct a point

cloud of the environment. Fig. 15 (top) shows the result of reconstructing

a 3D model of the Carnegie Mellon Campus from oblique aerial images, and

(bottom) shows the resulting digital surface model. Note that the result is

higher quality than produced from the LiDAR DEM, however there is over-

smoothing of sharp edges, which is a common symptom of SfM. This can be

improved by using at least two downward angles (30 and 45◦) and multiple

forward facing angles for each part of the scene.

We can also use aerial images to generate semantic information for spe-

cialized mission planning. Potentially we can leverage work in 2D image

classification to classify the terrain from aerial images, register that infor-

mation to our 3D map, and use this to produce “safer” flight paths that

follow roads or are biased towards wide-open spaces. Also registering the

color information to 3D point cloud maps provides improved visualization

and operator awareness.

35

Figure 15: A 3D map of the Carnegie Mellon campus, created using
photogrammetry.
Top image: Multiple aerial images and SfM were used to create a 3D model.
Bottom image: The resulting point cloud created from the mesh. The points
were sampled very finely such that it is rendered like a smooth surface.
An undesirable result of aerial photogrammetry is that the 3D model does not
have any detail around the base of buildings or underneath trees, which restricts
our ability to plan through cluttered environments.

36

Figure 16: We have experimented with using semantic information from GIS
databases to enable specialized mission planning, such as knowledge of road
networks. Also we can apply recent work in 2D image classification and register
that information onto our 3D map.

Top left: A terrestrial point cloud captured by the Stencil mapping device.
Top right: A set of aerial photographs stitched into one image.
Bottom: The result of manually registering the aerial image to the LiDAR data,
for visualization purposes.

37

4 Path Planning

The inputs to the planning system are:

• A 3D world model, consisting of an Octree (obstacles) and a 2D grid

(ground height map)

• A start and goal position (x,y,z)

• Various constraints, such as altitude and minimum distance to obstacles

4.1 Path Planner

To find a path of (x,y,z) positions from point-to-point we use a state-of-

the-art sampling-based algorithm called BIT* [27] which is hybrid method

combining a RRT and dynamic programming. Like all RRT-based methods,

the resulting plans can be “erratic”, so we employ a 2-step approach from

manipulator motion planning which is find a plan in t seconds of allowable

time, and then post-process the path using vertex simplification. This section

describes the path planner in more detail.

Whilst plans produced by RRT-based methods can be erratic, a key ben-

efit is rapid exploration of the state space, which is important to quickly

return a solution. Even though we use a simple 3-dimensional state space

(x,y,z), this space is discretized at a high-resolution and is very large, being

more than 500 meters3, which can make planning slow. Fig. 17 compares

the performance of various RRT-based planners.

38

Figure 17: This shows the performance of various planning algorithms for
point-to-point planning in two sizes of map. Our planning framework uses the
BIT* sampling-based algorithm, which generates paths that are within 1% of the
shortest path produced using the SPARTAN Visibility Graph algorithm. For
large maps, BIT* finds the path and creates the map in significantly less time
than SPARTAN.

Notes: “Time to create map” is the average time taken to generate the map representation, such as a
Voxel Grid or Octree, from the input point cloud.
“Time to find path” is the average time taken to find the shortest path. Except for PRM, RRT* and
BIT* which are allowed to run for 1 sec.
For the 5 sample-based algorithms, the time given includes planning + short-cutting.
“Path length” is the average length of the path found by the planner, where the error bars indicate the
minimum and maximum paths found.

Map 1: start = (67.0, 2.0, -2.0), goal = (65.0, 39.0, -1.0)
Map 2: start = (13.0, 20.0, -0.5), goal = (97.0, 56.0, 0.0)

The “Grid” method uses a Voxel Occupancy Grid implemented with a 3D array. It takes a long time to
create the map because it uses an inefficient method for expanding the occupied cells by the robot’s
radius. Planning on the grid is done using A* with 6-connected or 26-connected voxels. For small maps
the planning time is comparable to other methods.
SPARTAN works well for small maps. However the planning time gets longer as the map size increases
due to the larger number of vertices and the longer distance between vertices means the heading-angle
heuristic is less effective.
The traditional RRT methods are very quick to find a path but there is high variance in the path length,
and no way to optimize the path towards the shortest route.
PRM, RRT* and BIT* are all allowed to run for 1 second and produce similar path lengths. However,
BIT* produces the shortest path and with less variance.

39

Figure 18: This shows the asymptotic performance of RRT* and BIT*, for
planning times between “first solution” and infinity.
If allowed to run for 1 second, the sampling-based algorithms achieve a path
length which has approximately 1% error relative to path length, compared to the
path produced by the SPARTAN Visibility Graph method. If allowed to run for
longer, the length of the path approaches that of SPARTAN. The residual
difference in path length is because SPARTAN uses a different type of map
representation and a different tolerance for distance-to-obstacles.

40

As shown in Fig. 17, BIT* produces a shorter path that other sampling-

based methods, in less time and with less variance in path length. Traditional

non-optimizing RRT algorithms often produce a path in the wrong homo-

topy class and thus that solution can never converge to the shortest path.

Fig. 17 also shows the validity of our general approach in using an Octree

map representation and sample-based planner, which are faster than a previ-

ous state-of-the-art method called SPARTAN [16], that plans on a Visibility

Graph generated from a dense 3D Voxel Grid.

BIT* achieves its performance by using a heuristic to focus the state

sampling towards the goal and therefore produces a higher-quality solution

in less time. BIT* is also an “anytime” planner and will continuously improve

the quality of the path when allowed to run longer than finding the initial

solution. The final path converges asymptotically to a local minima so only

a small amount of optimization provides a nice improvement, as shown in

Fig. 18.

The path returned by a sampling-based planner is a set of (x,y,z) way-

points with linear segments, which is further improved using simplification

and spline fitting. The simplification process involves examining a pair of

non-neighbouring waypoints and trying to fit a linear segment between them.

If this segment is collision-free and shorter in distance, then the overall path

is updated.

The final step is to fit an interpolating spline between the sparse way-

points of the simplified path and to collision-check the resulting smoothed

path. We use a Catmull-Rom spline which is C1 continuous [49, 50], and

using a “centripetal” parametrization the resulting has no sharp cusps or self-

41

intersections [51]. The only negative is that a centripetal Catmull-Rom spline

has a higher curvature near waypoints than minimum-curvature splines. If

the random sampling-based planner produced a path with two waypoints

very close to each other, the resulting path after spline-fitting will have high-

curvature at this location.

In summary, the overall path planning process is as follows:

1. Load input data (two pointclouds: the 3D point cloud and 2.5D ground

surface points).

2. Set start and goal position.

3. Find path using BIT* for t seconds. The vertices and edges of the RRT

are collision-checked by doing a fast search for occupied voxels within

the robot’s radius.

4. Try to simplify path by reducing number of vertices, by short-cutting

with linear segments.

5. Fit an interpolating Catmull-Rom spline.

6. Collision check this path again.

7. Sample continuous path at 10cm intervals, to produce discrete path

required by control system.

42

4.2 Constraints

To fly the UAV in real-world situations, simple point-to-point planning is not

enough. Our planning system also supports various constraints, as listed in

Fig. 19. This section describes them in more detail.

Incorporating constraints during planning can be implemented in various

ways:

• Intermittently sample from the constraint manifold

• Project samples onto the constraint manifold

• Sample as normal, but reject samples that are not on the constraint

Currently we use rejection-sampling, which has provided acceptable perfor-

mance, but future work is to use a projection method.

Virtual obstacles are synthetic objects that are added and removed from

the world model, and are implemented as a sphere of occupied voxels in

the Octree map. This allows the planning system to “hallucinate” different

configurations of the world state, and to reason about “what if” an obstacle

Figure 19: Types of path constraints supported by the planning system.

43

did appear in some position. This is described in more detail in Section 4.3

(Obstacle Avoidance).

For the take-off and landing motion of the UAV, there are 3 types of path

shape that we use, depending on the mission requirements:

1. Vertical motion, joined to horizontal motion for the mission

2. Linear blend between waypoint and desired altitude

3. Smooth curved transition between vertical and horizontal motion

Fig. 20 compares these motion profiles. For (1), the end-points are lifted

to the desired altitude, the planner finds a point-to-point path between the

end-points, then a linear vertical segment is added between the path end-

points and true end-points near the ground. For (2), a funnel shape of voxels

is added to the Octree map above the linear segment created by method

(1), which results in a smooth blended motion. Method (3) is similar to

(1), except the end-points are also offset in the direction of the opposite

end-point, which results in a linear varying change in altitude.

Figure 20: Comparison of path profiles used for take-off and landing motions.
1. A linear, vertical take-off motion.
2. A smooth take-off motion resulting from a funnel constraint.
3. A take-off where vertical motion is linearly interpolated to desired altitude.

44

The altitude constraint is used by the planner when finding the main

path. When expanding the RRT, a new (x,y,z) state is sampled, checked

for collisions in the 3D Octree map, and its altitude is determined from the

2D height map of the ground surface. If the altitude is within the desired

altitude range then the state is valid, otherwise it is rejected.

Waypoints are used to guide the planner to find a path through a specific

part of the map. Usually the planner will find the most direct path to the

goal, but sometimes the operator may want the UAV to take a longer route

towards the goal, or pass through a certain area. For example, with one

waypoint, the planner finds a path from the start to the waypoint, then from

the waypoint to the goal. Each sub-path consists of linear segments which are

concatenated and the entire path is smoothed using an interpolating spline.

Polygon constraints are used to keep the UAV inside, or outside, a specific

x-y boundary. The region is defined by a series of (x,y) points that are

joined with lines to form an enclosing polygon. A wall of voxels is added

to the Octree map, ranging the entire height of the world model. The map

boundary constraint is useful when the map is L-shaped or U-shaped, acting

like a wall around the world model to stop the planner finding a path across

the unknown space. Similarly we can incorporate GIS overlays, like the vector

edges of a road, to constrain the UAV to fly along the road. A no-fly zone is

implemented in the same way, by adding a wall of voxels to the Octree map

in a small region. However, because the UAV starts outside this region then

the planner won’t find a path through the no-fly zone. One issue with using

this solid constraint for GIS overlays is that we would prefer to only bias

the path along the road, whilst letting it take an alternate route if required.

45

Future work is to implement soft constraints or to somehow bias the planner

to favor finding a path through certain areas of the map.

4.3 Obstacle avoidance

We propose a novel method for obstacle collision avoidance that uses pre-

computed sets of alternate routes for the UAV to fly. Normally if a robot

encounters an obstacle blocking its path, an online local planner is used to

find a collision-free path around the obstacle. In contrast to this, we want

to exploit the information available in our high-resolution static map by pre-

computing these obstacle avoidance maneuvers.

The first step is to plan the main path from the start to the goal using

the point-to-point method described above. Then we imagine “what if” the

robot was at some position along this main path and “what if” an obstacle

appeared in front of it? The planner “hallucinates” a virtual obstacle in front

of the robot and uses this synthetic world model to plan a short, alternate

path that goes around the obstacle. This process is iteratively repeated, first

along the length of the path, and then recursively along the length of each

alternate path. Fig. 21 illustrates the process of generating a roadmap of

alternative paths.

The procedure for generating a network of alternative paths is described in

Algorithm 1. Up to 5 alternate paths are generated for each virtual obstacle

by using a set of 5 spline primitives, oriented at 45◦angles relative to each

other. These splines are generated between the end-points on the parent

path with a 3rd control point located tangent to the mid-point. If a spline

representing an alternate path is found to be collision-free in the static map,

46

then it is added to the roadmap of paths. If no alternative paths are found

using the spline primitives, a path is found between the required end points

using a random-sampling based local planner. This method is effective for

finding alternate paths in very cluttered environments, however it can result

in paths with sharply varying curvature. The random nature of the planning

algorithm also means that the altitude along the length of the alternate path

can vary in a non-optimal way.

When the UAV is flying, the perception system checks if the main path

is free of obstacles along a receding-horizon. If an obstacle is detected on the

current path, the system will check the path roadmap for the next branch

point and return a list of the available alternative paths. If this alternative

path is free of obstacles then the path switching system tells the controller

to follow this branch around the obstacle and back to the main path. If all

the alternative paths are also in collision then the UAV must stop. This

method of inverse collision-checking reduces the computation required to

check the entire world space around the obstacle. The novelty of our approach

is that the organization of these pre-computed alternate paths means that

the problem of obstacle avoidance is reduced to a simple path switching

problem, being “which path do I take next”. This approach makes a trade-off

by reducing the required online computation by the CPU, but increases the

required memory to store the complex roadmap of paths.

47

48

Figure 21: The process of generating (offline) a roadmap of alternative paths,
that are used by our obstacle-avoidance controller (online).
1. A virtual robot (black-colored object) and virtual obstacle (white-colored
sphere) are positioned along the main path.
2. An alternate path is planned around the obstacle, using splines or a RRT as
described in our algorithm.
3. Alternate paths are generated at various angles.
4. The resulting set of alternate paths on Level 1 (blue).
5. The process is repeated depth-wise to produce level 2 paths (green), by placing
a virtual robot and virtual obstacle on each Level 1 path.
6. The process is repeated again depth-wise to produce level 3 paths (yellow).
7. The same paths from #6, viewed at an angle.
8. The resulting network of alternate paths with 3 levels.

49

Figure 22: This shows 4 methods for obstacle-avoidance
1. A local planner using a RRT.
2. A reactive local planner using path primitives on a receding-horizon.
3. A local planner using splines.
4. Our method, loading pre-planned paths from hard disk.
We compare the planning or computation time required for (1) and (3) with our
method (4).

50

Figure 23: This shows the computation time required by our method for
collision-avoidance (pre-planned alternative paths) compared to online local
planning using an RRT or spline primitives. Our method requires less online
computation time. Therefore in cluttered environments the vehicle has more time
to switch to an emergency maneuver or to stop completely. However, if our
network of alternative paths is too dense, we end up doing more collision-checking
work than an online local planner.

51

4.4 Preparing paths for the UAV

The final step is to add velocity information to the roadmap of paths to make

them trajectories. Currently we use constant velocities for large segments

of the path. For example, if a section of path has low curvature then it is

assigned with high velocity. If the path is maneuvering around obstacles then

a lower velocity is assigned. We use a simulation of the drone’s control system

and trial-and-error to determine the maximum safe velocity for each section

of the path. The changes in velocity are blended using linear interpolation.

We plan to improve this method in future work. A more robust approach

would be to use a dynamics filter to automatically determine the optimal

velocities for the path. This would require system identification to build an

accurate dynamic model of the drone and to characterize its handling capa-

bility in various situations. Using this model, a receding-horizon controller

is used offline to filter the path and the optimal control signals are recorded.

52

Figure 24: We use 7 point clouds from various outdoor environments to test our
path planner. Our approach can plan paths in high-resolution using all of these
maps, of which the largest is more than 1km long. Previous methods can only use
small maps like #1 and #2.

53

5 Experiments

5.1 Path Planning

We test our mission planning system using 7 high-resolutions maps of various

large outdoor environments, as shown in Fig. 24.

Map 1: The smallest map, this is a slice of map #3.

Map 2: Another slice of map #3 and the largest map that can be stored in

a Voxel Occupancy Grid.

Map 3: The Orchard.

Map 4: The Orchard.

Map 5: The Country Club.

Map 6: Trees in Schenley Park.

Map 7: Carrie Furnaces, a derelict former steel plant in Pittsburgh.

Fig. 25 shows the result of planning with and without altitude constraints

for Map No. 3.

Fig. 27 shows how the planner prefers to find the shortest path, which for

certain maps may not be the safest flight path, or even a reasonable path. By

using altitude constraints and defining a boundary around the region which

was mapped, the resulting path moves through the map.

Fig. 28 shows the result of using no-fly zones, to steer the path around

flying overhead of buildings.

We experimented with using information from GIS databases for path

planning, such as the location of roads. The road network for the United

States is represented as a geo-referenced vector graphics layer, where each

54

road consists of a series of parallel lines. We use this outline to create a hard

constraint that forces the planner to generate a path that follows the road,

as shown in Fig. 29.

55

Figure 25: This compares path planning with and without altitude constraints.
(top) A standard point-to-point path, with smooth motion for take-off and
landing resulting from the funnel constraints.
(bottom) A point-to-point path with funnel constraints and altitude constraint of
9.0m +0.0/-0.5

56

Figure 26: This shows a path planned in a large map which is longer than
500m, whilst avoiding obstacles and adhering to altitude constraints. The point
cloud is colorized using aerial imagery, for visualization purposes.
(top) The take-off phase of the path is the result of using a funnel constraint. A
short vertical section is generated using linear interpolation and the smooth,
curved transition comes from using a large-radius funnel-shaped constraint.
(bottom) The path goes around obstacles that exist in the static map, like the big
tree. An altitude constraint of 15–17m makes the shape of the path match the
ground terrain below it.

57

Figure 27: A comparison of planning with/without altitude and vector
boundary constraints in an L-shaped map, which can cause issues when finding
the shortest path.
(top left) A point-to-point plan with no constraints creates a path that goes
outside the area captured during the mapping process.
(top right) With altitude constraints, the shortest path still goes outside the map.
(bottom left) A boundary constraint is added along the most extremal points of
the map. The shortest path flies close to the inside corner of the map boundary
and down through the roof of a building which was not captured during the
mapping process.
(bottom right) Combining the map boundary constraint and an altitude
constraint of 1–3m results in a path that flies through the environment.

58

Figure 28: This compares the result of path planning using no-fly zones and
waypoints.
(top) A point-to-point path using an altitude constraint of 15–17m follows
approximately the shortest path, whilst flying around the large tree.
(middle) “No fly” zones are manually defined using vector boundary constraints,
shown in brown, which causes the path to fly around a small building near the
tree and around the building near the landing zone.
(bottom) Manually defined waypoints are used to force the planner to produce a
path along some desired route.

59

Figure 29: This shows how a path can be constrained to follow a road, using
vector outlines which are available from GIS databases.
(left images) A point-to-point path using a 12–15m altitude constraint follows
approximately the shortest path.
(right images) The road outline vectors are used to generate boundary
constraints, shown in orange. The path start and goal positions are located
within the road boundary and the resulting path follows the road.

60

Figure 30: A network of alternative paths is pre-planned (offline) and used for
obstacle-avoidance (online) by collision-checking one or more paths that would
allow the UAV to fly around the obstacle.
(top left) The main mission path (red) has an altitude constraint
of 9.0m +0.0/-0.5.
(top right) The level 1 set of alternative paths (blue). Note how these
obstacle-avoidance maneuvers fly around the large tree in the static map.
(bottom left) The level 2 set of alternative paths (green).
(bottom right) The smooth tale-off motion (red) and level 1 (blue), level 2
(green) and level 3 (yellow) paths.

61

Figure 31: Another example of a network of pre-planned alternative paths used
for obstacle avoidance.
(top left) A short point-to-point mission path (red).
(top left) A longer mission path (red) is planned using manually defined
[x,y,altitude] waypoints to force the path to be further away from obstacles, for
testing purposes.
(bottom left) The level 1 alternative paths (blue) for the short main path.
(bottom right) The level 1 alternative paths (blue) for the long main path. The
main path flies through a narrow overhanging structure and no collision-free
alternative paths exist. Therefore, if an obstacle appeared (online) in this “choke
point”, the UAV would have to come to a stop.

62

6 Conclusion

We have developed a fast and efficient method for planning missions for

multi-rotor UAV. Using a memory-efficient data structure we can create high-

resolution models of the world for planning through doorways and overhang-

ing structures in cluttered environments.

This work makes the following contributions:

• An analysis of 3D map data structures and algorithms for robot-to-map

collision checking and path planning.

• A fast planner for UAV missions that works directly on large, high-

resolution point clouds.

• A path planning system that can utilize multiple constraints: smooth

take-off and landing, height or altitude, map-based waypoints, no-fly

zones and GIS vector overlays.

• A novel obstacle-avoidance method that reduces online computation to

enable faster (and therefore safer) decision making, and improves the

predictability of motions.

In future work we hope to address how we can plan paths with would be

considered “safer” or have some type of safety bounds. One approach might

be to constrain the UAV to a certain altitude and try to stay as far away as

obstacles as possible. Also, if there are multiple topologically-distinct paths

at a specific altitude, we could choose the path with the maximum distance

to obstacles.

63

References

[1] “Unmanned Aerial Systems: FAA Continues Progress toward Integration into

the National Airspace,” US GAO (Government Accountability Office), Tech.

Rep. GAO-15-610, August 2015, http://www.gao.gov/products/GAO-15-610.

[2] K. S. Krishnakumar, P. H. Kopardekar, C. A. Ippolito, J. Melton, V. Stepa-

nyan, S. Sankararaman, and B. Nikaido, “Safe Autonomous Flight Environ-

ment (SAFE50) for the Notional Last 50 ft of Operation of 55 lb Class of

UAS,” in AIAA SciTech Forum, AIAA Information Systems-AIAA Infotech

@ Aerospace. American Institute of Aeronautics and Astronautics, Jan 2017,

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20170000382.pdf.

[3] S. Choudhury, S. Arora, and S. Scherer, “The Planner Ensemble and Trajec-

tory Executive: A High Performance Motion Planning System with Guaran-

teed Safety,” in AHS 70th Annual Forum, Montréal, Québec, Canada, May

2014.

[4] V. Dugar, S. Choudhury, and S. Scherer, “Smooth Trajectory Optimization

in Wind: First Results on a Full-Scale Helicopter,” in AHS Forum, Vol 73,

2017, March 2017.

[5] M. Nieuwenhuisen, D. Droeschel, M. Beul, and S. Behnke, “Autonomous Nav-

igation for Micro Aerial Vehicles in Complex GNSS-denied environments,”

Journal of Intelligent & Robotic Systems, vol. 84, no. 1, pp. 199–216, 2016.

[6] S. Singh, H. Cover, A. Stambler, B. Grocholsky, S. Spiker, J. Mishler, B. Ham-

ner, K. Strabala, G. Sherwin, M. Bergerman, M. Kaess, and G. Hemann, “Per-

ception for Safe Autonomous Helicopter Flight and Landing,” in AHS Forum,

Vol 72, 2016, May 2016.

64

[7] J. Zhang, R. Chadha, and S. Singh, “Realtime State Estimation & Mapping

for Autonomous Flight in Complex, GPS-denied, Environments,” in Workshop

on Vision-based High Speed Autonomous Navigation of UAVs at IEEE/RSJ

International Conference on Intelligent Robots and System (IROS), Oct 2016,

Paper was prepared for this workshop but not presented. Available online:

http://www.seas.upenn.edu/~loiannog/workshopIROS2016uav/.

[8] J. H. Reif, “Complexity of the Mover’s Problem and Generalizations,” in 20th

Annual Symposium on Foundations of Computer Science (sfcs 1979), Oct

1979, pp. 421–427.

[9] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Nu-

merische Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959.

[10] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuris-

tic Determination of Minimum Cost Paths,” IEEE Transactions on Systems,

Science, and Cybernetics, vol. SSC-4, no. 2, pp. 100–107, 1968.

[11] M. Likhachev, G. Gordon, and S. Thrun, “ARA*: Anytime A* with Provable

Bounds on Sub-Optimality,” in Proceedings of the Neural Information Process-

ing Systems Conference (NIPS): Advances in Neural Information Processing

Systems 16, 2003.

[12] H. Bast, S. Funke, and D. Matijevic, “TRANSIT – Ultrafast Shortest-Path

Queries with Linear-Time Preprocessing,” in In 9th DIMACS Implementation

Challenge Workshop: Shortest Paths, 2006.

[13] D. Ferguson and A. T. Stentz , “Field D*: An Interpolation-based Path

Planner and Replanner,” in Proceedings of the International Symposium on

Robotics Research (ISRR), October 2005.

65

[14] J. Carsten, D. Ferguson , and A. T. Stentz , “3D Field D: Improved

Path Planning and Replanning in Three Dimensions,” in Proceedings of the

2006 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), October 2006, pp. 3381–3386.

[15] A. Nash, K. Daniel, S. Koenig, and A. Feiner, “Theta*: Any-angle Path Plan-

ning on Grids,” in Proceedings of the 22nd National Conference on Artificial

Intelligence - Volume 2, ser. AAAI’07. AAAI Press, 2007, pp. 1177–1183.

[16] H. Cover, S. Choudhury, S. Scherer, and S. Singh, “Sparse Tangential Network

(SPARTAN): Motion Planning for Micro Aerial Vehicles,” in 2013 IEEE Inter-

national Conference on Robotics and Automation, May 2013, pp. 2820–2825.

[17] I. Borovikov. Navigation Graph Generation. [Online].

Available: http://www.gamedev.net/reference/index.html/_/technical/

artificial-intelligence/navigation-graph-generation-r2805

[18] T. Lozano-Pérez and M. A. Wesley, “An Algorithm for Planning Collision-

free Paths Among Polyhedral Obstacles,” Commun. ACM, vol. 22, no. 10, pp.

560–570, Oct. 1979.

[19] F. Schøler, “3D Path Planning for Autonomous Aerial Vehicles in Con-

strained Spaces,” Ph.D. dissertation, Aalborg University, Denmark, 2012,

http://vbn.aau.dk/files/68652677/thesis.pdf.

[20] A. Kneidl, A. Borrmann, and D. Hartmann, “Generating Sparse Navigation

Graphs for Microscopic Pedestria Simulation Models,” Advanced Engineering

Informatics, vol. 26, no. 4, pp. 669–680, October 2012.

[21] P. Beeson, N. K. Jong, and B. Kuipers, “Towards Autonomous Topologi-

cal Place Detection Using the Extended voronoi graph,” in Proceedings of

66

http://www.gamedev.net/reference/index.html/_/technical/artificial-intelligence/navigation-graph-generation-r2805
http://www.gamedev.net/reference/index.html/_/technical/artificial-intelligence/navigation-graph-generation-r2805

the 2005 IEEE International Conference on Robotics and Automation, ICRA

2005, April 18-22, 2005, Barcelona, Spain, 2005, pp. 4373–4379.

[22] B. Lau, C. Sprunk, and W. Burgard, “Efficient Grid-Based Spatial Represen-

tations for Robot Navigation in Dynamic Environments,” Robotics and Au-

tonomous Systems, vol. 61, no. 10, pp. 1116 – 1130, 2013, selected Papers from

the 5th European Conference on Mobile Robots (ECMR 2011).

[23] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars, “Probabilis-

tic Roadmaps for Path Planning in High-Dimensional Configuration Spaces,”

IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580,

Aug 1996.

[24] S. M. LaValle and J. J. Kuffner, “Randomized Kinodynamic Planning,” in

Proceedings 1999 IEEE International Conference on Robotics and Automation,

vol. 1, 1999, pp. 473–479 vol.1.

[25] S. Karaman and E. Frazzoli, “Sampling-based Algorithms for Optimal Motion

Planning,” International Journal of Robotics Research, vol. 30, no. 7, pp. 846–

894, Jun. 2011.

[26] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*: Optimal

Sampling-based Path Planning Focused via Direct Sampling of an Admissible

Ellipsoidal Heuristic,” in 2014 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems, Sept 2014, pp. 2997–3004.

[27] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot., “Batch Informed Trees

(BIT*): Sampling-based Optimal Planning via the Heuristically Guided

Search of Implicit Random Geometric Graphs,” in 2015 IEEE International

Conference on Robotics and Automation (ICRA), May 2015, pp. 3067–3074.

67

[28] S. Choudhury, J. D. Gammell, T. D. Barfoot, S. S. Srinivasa, and S. Scherer,

“Regionally Accelerated Batch Informed Trees (RABIT*): A Framework to

Integrate Local Information into Optimal Path Planning,” in 2016 IEEE In-

ternational Conference on Robotics and Automation (ICRA), IEEE, Ed., May

2016.

[29] S. Scherer, S. Singh, L. J. Chamberlain, and S. Saripalli, “Flying Fast and

Low Among Obstacles,” in Proceedings International Conference on Robotics

and Automation, Pittsburgh, PA, April 2007.

[30] I. Dryanovski, R. G. Valenti, and J. Xiao, “An Open-Source Navigation System

for Micro Aerial Vehicles,” Autonomous Robots, vol. 34, no. 3, pp. 177–188,

2013.

[31] B. MacAllister, J. Butzke, A. Kushleyev, H. Pandey, and M. Likhachev,

“Path Planning for Non-circular Micro Aerial Vehicles in Constrained Environ-

ments,” in 2013 IEEE International Conference on Robotics and Automation,

May 2013, pp. 3933–3940.

[32] Z. Fang, S. Yang, S. Jain, G. Dubey, S. Roth, S. M. Maeta, S. T. Nuske,

Y. Wu, and S. Scherer, “Robust Autonomous Flight in Constrained and Vi-

sually Degraded Shipboard Environments,” Journal of Field Robotics, vol. 34,

no. 1, pp. 25–52, January 2017.

[33] D. Droeschel, M. Nieuwenhuisen, M. Beul, D. Holz, J. Stückler, and S. Behnke,

“Multilayered Mapping and Navigation for Autonomous Micro Aerial Vehi-

cles,” Journal of Field Robotics, vol. 33, no. 4, pp. 451–475, June 2016.

[34] H. Hu, D. Munoz, J. A. Bagnell, and M. Hebert, “Efficient 3-D Scene Analysis

from Streaming Data,” in 2013 IEEE International Conference on Robotics

and Automation, May 2013, pp. 2297–2304.

68

[35] W. Zhang, J. Qi, P. Wan, H. Wang, D. Xie, X. Wang, and G. Yan, “An Easy-

to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation,”

Remote Sensing, vol. 8, no. 6, p. 501, 2016.

[36] P. E. Axelsson, “DEM Generation from Laser Scanner Data using Adap-

tive TIN Models,” International Archives of the Photogrammetry and Remote

Sensing, vol. 33, pp. 110–117, 2000.

[37] J. S. Evans and A. T. Hudak, “A Multiscale Curvature Algorithm for Classi-

fying Discrete Return LiDAR in Forested Environments,” IEEE Transactions

on Geoscience and Remote Sensing, vol. 45, no. 4, pp. 1029–1038, April 2007.

[38] N. Brodu and D. Lague, “3D Terrestrial LiDAR Data Classification of Complex

Natural Scenes using a Multi-scale Dimensionality Criterion: Applications in

Geomorphology,” {ISPRS} Journal of Photogrammetry and Remote Sensing,

vol. 68, pp. 121–134, 2012.

[39] Kaarta. Stencil 3D mapping & localization device. [Online]. Available:

http://www.kaarta.com/stencil

[40] J. Zhang and S. Singh, “LOAM: Lidar Odometry and Mapping in Real-time,”

in Robotics: Science and Systems Conference, Pittsburgh, PA, July 2014.

[41] J. Zhang and S. Singh., “Visual-Lidar Odometry and Mapping: Low-drift,

Robust, and Fast,” in IEEE International Conference on Robotics and Au-

tomation (ICRA), Pittsburgh, PA, May 2015.

[42] Results from the microsoft indoor localization competition, held at the

15th acm/ieee international conference on information processing in sensor

networks (ipsn). [Online]. Available: http://www.microsoft.com/en-us/

research/event/microsoft-indoor-localization-competition-ipsn-2016/

69

http://www.kaarta.com/stencil
http://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-competition-ipsn-2016/
http://www.microsoft.com/en-us/research/event/microsoft-indoor-localization-competition-ipsn-2016/

[43] G. Hemann, S. Singh, and M. Kaess, “Long-range GPS-denied Aerial Inertial

Navigation with LiDAR Localization,” in IEEE/RSJ International Conference

on Intelligent Robots and System (IROS), October 2016.

[44] B. Discoe. Virtual Terrain Project. [Online]. Available: http://www.vterrain.

org

[45] Pennsylvania Department of Conservation and Natural Resources, Bureau

of Topographic and Geologic Survey. PAMAP program. [Online]. Available:

http://www.dcnr.state.pa.us/topogeo/pamap/lidar/index.htm

[46] USGS. EarthExplorer. [Online]. Available: http://www.earthexplorer.usgs.

gov

[47] Microsoft. Bing Maps. [Online]. Available: http://www.bing.com/maps/

[48] Sanborn. Oblique Analyst. [Online]. Available: http://www.sanborn.com/

oblique-analyst/

[49] E. Catmull and R. Rom, “A Class of Local Interpolating Splines,” in Computer

Aided Geometric Design 74. Academic Press, 1974, pp. 317 – 326.

[50] P. J. Barry and R. N. Goldman, “A Recursive Evaluation Algorithm for a

Class of Catmull-Rom Splines,” in Proceedings of the 15th Annual Conference

on Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’88. New

York, NY, USA: ACM, 1988, pp. 199–204.

[51] C. Yuksel, S. Schaefer, and J. Keyser, “On the Parameterization of Catmull-

Rom Curves,” in 2009 SIAM/ACM Joint Conference on Geometric and Phys-

ical Modeling. New York, NY, USA: ACM, 2009, pp. 47–53.

70

http://www.vterrain.org
http://www.vterrain.org
http://www.dcnr.state.pa.us/topogeo/pamap/lidar/index.htm
http://www.earthexplorer.usgs.gov
http://www.earthexplorer.usgs.gov
http://www.bing.com/maps/
http://www.sanborn.com/oblique-analyst/
http://www.sanborn.com/oblique-analyst/

	Introduction
	UAVs in Urban Environments
	Problem Motivation
	Problem Statement

	Related Work
	Motion Planning Algorithms
	Graph-based Search
	Discrete, grid-based planning
	Roadmap Methods
	Probabilistic Sampling-based Methods

	Autonomous UAV Navigation
	Terrain Classification

	Mapping
	Creating a 3D map
	World Modeling
	Ground Classification
	Public Map Data
	LiDAR DEMs
	Aerial Imagery

	Path Planning
	Path Planner
	Constraints
	Obstacle avoidance
	Preparing paths for the UAV

	Experiments
	Path Planning

	Conclusion

