
Generating	the	IKFast	CPP	file	for	the
IRB	6640	robot
After	getting	the	link	info,	we	can	start	generating	the	IK	solver	CPP	file	for	handling	the
IK	of	this	robot.

Use	the	following	command	to	generate	the	IK	solver	for	the	IRB	6640	robot:

$	python	`openrave-config	--python-dir`/openravepy/_openravepy_/ikfast.py	-

-robot=irb6640.dae	--iktype=transform6d	--baselink=1	--eelink=8	--

savefile=output_ikfast61.cpp

The	preceding	command	generates	a	CPP	file	called	output_ikfast61.cpp	in	which	the
IK	type	is	transform6d,	the	position	of	the	baselink	is	1,	and	the	end	effector	link	is	8.
We	need	to	mention	the	robot	DAE	file	as	the	robot	argument.

We	can	test	this	file	using	the	following	procedure:

1.	 Download	the	IKFast	demo	code	file	from	http://kaist-ros-
pkg.googlecode.com/svn/trunk/arm_kinematics_tools/src/ikfastdemo/ikfastdemo.cpp.

2.	 Also,	copy	IKFast.h	to	the	current	folder.	This	file	is	present	in	the	cloned	file	of
OpenRave.	We	will	get	this	header	from	openrave/python.

3.	 After	getting	output_ikfast61.cpp,	ikfastdemo.cpp,	and	ikfast.h	on	the	same
folder,	we	need	to	edit	ikfastdemo.cpp	and	change	the	following	portion.	Here,	we
are	commenting	a	header,	and	instead	of	that,	we	add	the	CPP	file	that	we	have
generated,	that	is	output_ikfast61.cpp.

#define	IK_VERSION	61

#include	"output_ikfast61.cpp"

//#include	"ikfast61.Transform6D.0_1_2_3_4_5.cpp"

4.	 Compile	the	edited	file	and	check	whether	you	are	getting	any	errors.	Here	is	the
command	to	compile	and	execute	this	code:

$	g++	ikfastdemo.cpp	-lstdc++	-llapack	-o	compute	-lrt

$	./compute

If	the	demo	is	working,	we	can	go	to	the	next	step.	Now,	we	have	successfully	created	the
IK	solver	CPP	file;	the	next	step	is	to	create	a	MoveIt!	IK	Fast	plugin	using	this	source
code.

http://kaist-ros-pkg.googlecode.com/svn/trunk/arm_kinematics_tools/src/ikfastdemo/ikfastdemo.cpp
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