
Generating	the	IKFast	CPP	file	for	the
IRB	6640	robot
After	getting	the	link	info,	we	can	start	generating	the	IK	solver	CPP	file	for	handling	the
IK	of	this	robot.

Use	the	following	command	to	generate	the	IK	solver	for	the	IRB	6640	robot:

$	python	`openrave-config	--python-dir`/openravepy/_openravepy_/ikfast.py	-

-robot=irb6640.dae	--iktype=transform6d	--baselink=1	--eelink=8	--

savefile=output_ikfast61.cpp

The	preceding	command	generates	a	CPP	file	called	output_ikfast61.cpp	in	which	the
IK	type	is	transform6d,	the	position	of	the	baselink	is	1,	and	the	end	effector	link	is	8.
We	need	to	mention	the	robot	DAE	file	as	the	robot	argument.

We	can	test	this	file	using	the	following	procedure:

1.	 Download	the	IKFast	demo	code	file	from	http://kaist-ros-
pkg.googlecode.com/svn/trunk/arm_kinematics_tools/src/ikfastdemo/ikfastdemo.cpp.

2.	 Also,	copy	IKFast.h	to	the	current	folder.	This	file	is	present	in	the	cloned	file	of
OpenRave.	We	will	get	this	header	from	openrave/python.

3.	 After	getting	output_ikfast61.cpp,	ikfastdemo.cpp,	and	ikfast.h	on	the	same
folder,	we	need	to	edit	ikfastdemo.cpp	and	change	the	following	portion.	Here,	we
are	commenting	a	header,	and	instead	of	that,	we	add	the	CPP	file	that	we	have
generated,	that	is	output_ikfast61.cpp.

#define	IK_VERSION	61

#include	"output_ikfast61.cpp"

//#include	"ikfast61.Transform6D.0_1_2_3_4_5.cpp"

4.	 Compile	the	edited	file	and	check	whether	you	are	getting	any	errors.	Here	is	the
command	to	compile	and	execute	this	code:

$	g++	ikfastdemo.cpp	-lstdc++	-llapack	-o	compute	-lrt

$	./compute

If	the	demo	is	working,	we	can	go	to	the	next	step.	Now,	we	have	successfully	created	the
IK	solver	CPP	file;	the	next	step	is	to	create	a	MoveIt!	IK	Fast	plugin	using	this	source
code.

http://kaist-ros-pkg.googlecode.com/svn/trunk/arm_kinematics_tools/src/ikfastdemo/ikfastdemo.cpp

	Mastering ROS for Robotics Programming
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Downloading the color images of this book
	Errata
	Piracy
	Questions
	1. Introduction to ROS and Its Package Management
	Why should we learn ROS?
	Why we prefer ROS for robots
	Why some do not prefer ROS for robots
	Understanding the ROS file system level
	ROS packages
	ROS meta packages
	ROS messages
	The ROS services
	Understanding the ROS computation graph level
	Understanding ROS nodes
	ROS messages
	ROS topics
	ROS services
	ROS bags
	Understanding ROS Master
	Using the ROS parameter
	Understanding ROS community level
	What are the prerequisites to start with ROS?
	Running ROS Master and ROS parameter server
	Checking the roscore command output
	Creating a ROS package
	Working with ROS topics
	Creating ROS nodes
	Building the nodes
	Adding custom msg and srv files
	Working with ROS services
	Working with ROS actionlib
	Creating the ROS action server
	Creating the ROS action client
	Building the ROS action server and client
	Creating launch files
	Applications of topics, services, and actionlib
	Maintaining the ROS package
	Releasing your ROS package
	Preparing the ROS package for the release
	Releasing our package
	Creating a Wiki page for your ROS package
	Questions
	Summary
	2. Working with 3D Robot Modeling in ROS
	ROS packages for robot modeling
	Understanding robot modeling using URDF
	Creating the ROS package for the robot description
	Creating our first URDF model
	Explaining the URDF file
	Visualizing the robot 3D model in RViz
	Interacting with pan and tilt joints
	Adding physical and collision properties to a URDF model
	Understanding robot modeling using xacro
	Using properties
	Using the math expression
	Using macros
	Conversion of xacro to URDF
	Creating the robot description for a seven DOF robot manipulator
	Arm specification
	Type of joints
	Explaining the xacro model of seven DOF arm
	Using constants
	Using macros
	Including other xacro files
	Using meshes in the link
	Working with the robot gripper
	Viewing the seven DOF arm in RViz
	Understanding joint state publisher
	Understanding the robot state publisher
	Creating a robot model for the differential drive mobile robot
	Questions
	Summary
	3. Simulating Robots Using ROS and Gazebo
	Simulating the robotic arm using Gazebo and ROS
	The Robotic arm simulation model for Gazebo
	Adding colors and textures to the Gazebo robot model
	Adding transmission tags to actuate the model
	Adding the gazebo_ros_control plugin
	Adding a 3D vision sensor to Gazebo
	Simulating the robotic arm with Xtion Pro
	Visualizing the 3D sensor data
	Moving robot joints using ROS controllers in Gazebo
	Understanding the ros_control packages
	Different types of ROS controllers and hardware interfaces
	How the ROS controller interacts with Gazebo
	Interfacing joint state controllers and joint position controllers to the arm
	Launching the ROS controllers with Gazebo
	Moving the robot joints
	Simulating a differential wheeled robot in Gazebo
	Adding the laser scanner to Gazebo
	Moving the mobile robot in Gazebo
	Adding joint state publishers in the launch file
	Adding the ROS teleop node
	Questions
	Summary
	4. Using the ROS MoveIt! and Navigation Stack
	Installing MoveIt!
	MoveIt! architecture
	The move_group node
	Motion planning using MoveIt!
	Motion planning request adapters
	MoveIt! planning scene
	MoveIt! kinematics handling
	MoveIt! collision checking
	Generating MoveIt! configuration package using Setup Assistant tool
	Step 1 – Launching the Setup Assistant tool
	Step 2 – Generating the Self-Collision matrix
	Step 3 – Adding virtual joints
	Step 4 – Adding planning groups
	Step 5 – Adding the robot poses
	Step 6 – Setup the robot end effector
	Step 7 – Adding passive joints
	Step 8 – Generating configuration files
	Motion planning of robot in RViz using MoveIt! configuration package
	Using the RViz MotionPlanning plugin
	Interfacing the MoveIt! configuration package to Gazebo
	Step 1 – Writing the controller configuration file for MoveIt!
	Step 2 – Creating the controller launch files
	Step 3 – Creating the controller configuration file for Gazebo
	Step 4 – Creating the launch file for Gazebo trajectory controllers
	Step 5 – Debugging the Gazebo- MoveIt! interface
	Understanding ROS Navigation stack
	ROS Navigation hardware requirements
	Working with Navigation packages
	Understanding the move_base node
	Working of Navigation stack
	Localizing on the map
	Sending a goal and path planning
	Collision recovery behavior
	Sending the command velocity
	Installing ROS Navigation stack
	Building a map using SLAM
	Creating a launch file for gmapping
	Running SLAM on the differential drive robot
	Implementing autonomous navigation using AMCL and a static map
	Creating an AMCL launch file
	Questions
	Summary
	5. Working with Pluginlib, Nodelets, and Gazebo Plugins
	Understanding pluginlib
	Creating plugins for the calculator application using pluginlib
	Working with pluginlib_calculator package
	Step 1 – Creating calculator_base header file
	Step 2 – Creating calculator_plugins header file
	Step 3 – Exporting plugins using calculator_plugins.cpp
	Step 4 – Implementing plugin loader using calculator_loader.cpp
	Step 5 – Creating plugin description file: calculator_plugins.xml
	Step 6 – Registering plugin with the ROS package system
	Step 7 – Editing the CMakeLists.txt file
	Step 8: Querying the list of plugins in a package
	Step 9 – Running the plugin loader
	Understanding ROS nodelets
	Creating a nodelet
	Step 1 – Creating a package for nodelet
	Step 2 – Creating hello_world.cpp nodelet
	Step 3 – Explanation of hello_world.cpp
	Step 4 – Creating plugin description file
	Step 5 – Adding the export tag in package.xml
	Step 6 – Editing CMakeLists.txt
	Step 7 – Building and running nodelets
	Step 8 – Creating launch files for nodelets
	Understanding the Gazebo plugins
	Creating a basic world plugin
	Questions
	Summary
	6. Writing ROS Controllers and Visualization Plugins
	Understanding pr2_mechanism packages
	pr2_controller_interface package
	Initialization of the controller
	Starting the ROS controller
	Updating ROS controller
	Stopping the controller
	pr2_controller_manager
	Writing a basic real-time joint controller in ROS
	Step 1 – Creating controller package
	Step 2 – Creating controller header file
	Step 3 – Creating controller source file
	Step 4 – Explanation of the controller source file
	Step 5 – Creating plugin description file
	Step 6 – Updating package.xml
	Step 7 – Updating CMakeLists.txt
	Step 8 – Building controller
	Step 9 – Writing controller configuration file
	Step 10 – Writing launch file for the controller
	Step 11 – Running controller along with PR2 simulation in Gazebo
	Understanding ros_control packages
	Understanding ROS visualization tool (RViz) and its plugins
	Displays panel
	RViz toolbar
	Views
	Time panel
	Dockable panels
	Writing a RViz plugin for teleoperation
	Methodology of building RViz plugin
	Step 1 – Creating RViz plugin package
	Step 2 – Creating RViz plugin header file
	Step 3 – Creating RViz plugin definition
	Step 4 – Creating plugin description file
	Step 5 – Adding export tags in package.xml
	Step 6 – Editing CMakeLists.txt
	Step 7 – Building and loading plugins
	Questions
	Summary
	7. Interfacing I/O Boards, Sensors, and Actuators to ROS
	Understanding the Arduino–ROS interface
	What is the Arduino–ROS interface?
	Understanding the rosserial package in ROS
	Installing rosserial packages on Ubuntu 14.04/15.04
	Understanding ROS node APIs in Arduino
	ROS – Arduino Publisher and Subscriber example
	Arduino-ROS, example – blink LED and push button
	Arduino-ROS, example – Accelerometer ADXL 335
	Arduino-ROS, example – ultrasonic distance sensor
	Equations to find distance using the ultrasonic range sensor
	Arduino-ROS, example – Odometry Publisher
	Interfacing Non-Arduino boards to ROS
	Setting ROS on Odroid–C1 and Raspberry Pi 2
	How to install an OS image to Odroid-C1 and Raspberry Pi 2
	Installation in Windows
	Installation in Linux
	Connecting to Odroid-C1 and Raspberry Pi 2 from a PC
	Configuring an Ethernet hotspot for Odroid-C1 and Raspberry Pi 2
	Installing Wiring Pi on Odroid-C1
	Installing Wiring Pi on Raspberry Pi 2
	Blinking LED using ROS on Odroid-C1 and Raspberry Pi 2
	Push button + blink LED using ROS on Odroid-C1 and Raspberry Pi 2
	Running LED blink in Odroid-C1
	Running button handling and LED blink in Odroid-C1
	Running LED blink in Raspberry Pi 2
	Interfacing Dynamixel actuators to ROS
	Questions
	Summary
	8. Programming Vision Sensors using ROS, Open-CV, and PCL
	Understanding ROS – OpenCV interfacing packages
	Understanding ROS – PCL interfacing packages
	Installing ROS perception
	Interfacing USB webcams in ROS
	Working with ROS camera calibration
	Converting images between ROS and OpenCV using cv_bridge
	Image processing using ROS and OpenCV
	Step 1: Creating ROS package for the experiment
	Step 2: Creating source files
	Step 3: Explanation of the code
	Publishing and subscribing images using image_transport
	Converting OpenCV-ROS images using cv_bridge
	Finding edges on the image
	Visualizing raw and edge detected image
	Step 4: Editing the CMakeLists.txt file
	Step 5: Building and running example
	Interfacing Kinect and Asus Xtion Pro in ROS
	Interfacing Intel Real Sense camera with ROS
	Working with point cloud to laser scan package
	Interfacing Hokuyo Laser in ROS
	Interfacing Velodyne LIDAR in ROS
	Working with point cloud data
	How to publish a point cloud
	How to subscribe and process the point cloud
	Writing a point cloud data to a PCD file
	Read and publish point cloud from a PCD file
	Streaming webcam from Odroid using ROS
	Questions
	Summary
	9. Building and Interfacing Differential Drive Mobile Robot Hardware in ROS
	Introduction to Chefbot- a DIY mobile robot and its hardware configuration
	Flashing Chefbot firmware using Energia IDE
	Serial data sending protocol from LaunchPad to PC
	Serial data sending protocol from PC to Launchpad
	Discussing Chefbot interface packages on ROS
	Computing odometry from encoder ticks
	Computing motor velocities from ROS twist message
	Running robot stand alone launch file using C++ nodes
	Configuring the Navigation stack for Chefbot
	Configuring the gmapping node
	Configuring the Navigation stack packages
	Common configuration (local_costmap) and (global_costmap)
	Configuring global costmap parameters
	Configuring local costmap parameters
	Configuring base local planner parameters
	Configuring DWA local planner parameters
	Configuring move_base node parameters
	Understanding AMCL
	Understanding RViz for working with the Navigation stack
	2D Pose Estimate button
	Visualizing the particle cloud
	The 2D Nav Goal button
	Displaying the static map
	Displaying the robot footprint
	Displaying the global and local cost map
	Displaying the global plan, local plan, and planner plan
	The current goal
	Obstacle avoidance using the Navigation stack
	Working with Chefbot simulation
	Building a room in Gazebo
	Adding model files to the Gazebo model folder
	Sending a goal to the Navigation stack from a ROS node
	Questions
	Summary
	10. Exploring the Advanced Capabilities of ROS-MoveIt!
	Motion planning using the move_group C++ interface
	Motion planning a random path using MoveIt! C++ APIs
	Motion planning a custom path using MoveIt! C++ APIs
	Collision checking in robot arm using MoveIt!
	Adding a collision object in MoveIt!
	Removing a collision object from the planning scene
	Checking self collision using MoveIt! APIs
	Working with perception using MoveIt! and Gazebo
	Grasping using MoveIt!
	Working with robot pick and place task using MoveIt!
	Creating Grasp Table and Grasp Object in MoveIt!
	Pick and place action in Gazebo and real Robot
	Understanding Dynamixel ROS Servo controllers for robot hardware interfacing
	The Dynamixel Servos
	Dynamixel-ROS interface
	Interfacing seven DOF Dynamixel based robotic arm to ROS MoveIt!
	Creating a controller package for COOL arm robot
	MoveIt! configuration of the COOL Arm
	Questions
	Summary
	11. ROS for Industrial Robots
	Understanding ROS-Industrial packages
	Goals of ROS-Industrial
	ROS-Industrial – a brief history
	Benefits of ROS-Industrial
	Installing ROS-Industrial packages
	Block diagram of ROS-Industrial packages
	Creating URDF for an industrial robot
	Creating MoveIt! configuration for an industrial robot
	Updating the MoveIt! configuration files
	Testing the MoveIt! configuration
	Installing ROS-Industrial packages of universal robotic arm
	Installing the ROS interface of universal robots
	Understanding the Moveit! configuration of a universal robotic arm
	Working with MoveIt! configuration of ABB robots
	Understanding the ROS-Industrial robot support packages
	Visualizing the ABB robot model in RViz
	ROS-Industrial robot client package
	Designing industrial robot client nodes
	ROS-Industrial robot driver package
	Understanding MoveIt! IKFast plugin
	Creating the MoveIt! IKFast plugin for the ABB-IRB6640 robot
	Prerequisites for developing the MoveIt! IKFast plugin
	OpenRave and IK Fast Module
	MoveIt! IK Fast
	Installing MoveIt! IKFast package
	Installing OpenRave on Ubuntu 14.04.3
	Creating the COLLADA file of a robot to work with OpenRave
	Generating the IKFast CPP file for the IRB 6640 robot
	Creating the MoveIt! IKFast plugin
	Questions
	Summary
	12. Troubleshooting and Best Practices in ROS
	Setting up Eclipse IDE on Ubuntu 14.04.3
	Setting ROS development environment in Eclipse IDE
	Global settings in Eclipse IDE
	ROS compile script for Eclipse IDE
	Adding ROS Catkin package to Eclipse
	Adding run configurations to run ROS nodes in Eclipse
	Best practices in ROS
	ROS C++ coding style guide
	Standard naming conventions used in ROS
	Code license agreement
	ROS code formatting
	ROS code documentation
	Console output
	Best practices in the ROS package
	Important troubleshooting tips in ROS
	Usage of roswtf
	Questions
	Summary
	Index

